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Abstract

From the late 90 s until today, the advances in high-
throughput measurement technologies are remarkable
and producing a huge amount of cancer genomic data.
Due to the complexity of data, however, we have not
still got a fully integrated view of genetic and tran-
scriptional changes that differ among individuals. To
visualize the differences in genetic and transcriptional
data among patient samples, we focus on grouping of
three types of features, i.e., genes, patient samples,
and expression modules. We propose an integrative
framework based on the biclustering of multiple types of
biological data, i.e., copy number, gene expression, and
module activity, by extending the Infinite Relational
Models (IRM), a non-parametric Bayesian model used
to perform a biclustering of binary data, for continuous
data. We demonstrate an utility of the model using a
colorectal cancer (CRC) dataset. Our result discovers
a clinical insight that the activity of modules related
to an immune system is associated with CRC patients
survival, which demonstrates the ability of our novel
integrative approach to group not only genes and
modules but also patient samples based on their genetic
and transcriptional alterations.

keywords: Cancer Systems Biology, Non-parametric
Bayesian Model, Infinite Relational Model (IRM), Ten-
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1 Introduction

Massive datasets on cancer generated by advanced
high-throughput technologies have raised a research
problem: how we can obtain biological insights by an
integrative analysis of multiple types of biological data,
especially, DNA copy number and mRNA expression.
The aim of the integrative analysis can be separated
mainly into two [2]. One is to reveal the target genes
of particular genes, e.g., driver gene. Driver genes
are defined as genes driving the tumorigenesis by their
genetic alterations, e.g., changes in DNA copy number.

To elucidate the gene regulatory mechanism of cancer,
Akavia, et al. [1] have grouped genes in order to obtain
an expression module associated with driver genes, i.e.,
targets of driver genes showing a coherent expression.
The other is to discover tumor subtypes defined as
subgroups of patient samples that are characterized
by concordant genetic and transcriptional changes. To
identify tumor subtypes, Mo, et al. [4] have performed
the clustering of patient samples. Patient samples
belonging to the same tumor subtypes may exhibit
a similar prognosis or drug responses, therefore, the
approach is important in terms of the personalized
medicine.

In this study, we aimed to achieve the above two
goals simultaneously and proposed a novel integrative
approach considering not only genes and expression
modules but also the diversity in gene signatures across
patient samples. We aimed to group three types of
features simultaneously, i.e., genes, patient samples,
and expression modules by integrating three types
of biological data, i.e., DNA copy number, mRNA
expression, and module activity. For this goal, we
developed a model-based clustering method, which is
based on the IRM [3], a non-parametric Bayesian
model. The IRM was proposed for the discovery
of hidden relationship among objects by simultaneous
clustering of multiple features in tensor data without
the number of clusters given a priori. Although IRM
was originally developed for binary data representing
the existence of relationship between objects, we devel-
oped an extended version of the model to allow us to
analyze the continuous biological data.

This paper is organized as follows. Section 2 describes
the datasets of CRC patients used in this work, the
mathematical model for the simultaneous clustering
of tensor data, and the method to identify clusters
representing the upstream driver genes and the down-
stream expression modules from the clustering results.
Section 3 shows the performance of the proposed model
and demonstrates that the obtained module cluster
can possibly be the prognostic factor candidates for
CRC patients survival. Finally, Section 4 discusses the



advantages of our approach comparing with the related
works. Figure 1 shows the overall framework of our
proposed method described in Section 2. We expect
that this novel approach will be a powerful tool for
the identification of further unexpected relationships
between genes, samples, and modules across trans-
omics data.
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Figure 1: Outline of our proposed method

2 Materials and Methods

2.1 Data and Preprocessing

In order to prepare the three types of biological data
matrices, i.e., DNA copy number, mRNA expression,
and expression module activity of CRC patients, we
used DNA copy number and mRNA expression data
of CRC patients ! downloaded from the TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/ [6]).
Note that the former two types of matrix data have
elements of gene x sample and the last one have
elements of module x sample.

For DNA copy number data matrix, we transformed
the values to the logarithmic scale, converted the probe
set IDs to gene symbols, and prepare the segmented val-
ues across chromosomes to genes on the chromosomal
loci.

For mRNA expression data matrix, after converting
the values to the logarithmic scale and the probe set IDs
to gene symbols, we normalized the data to visualize the
difference among patient samples. The normalization

Thttps://tcga-data.nci.nih.gov/docs/publications/
coadread_2012/

of the matrix data was performed so that each row has
mean 0 and variance 1. Then, we selected the top 2000
genes with the highest variances of expression profiles.
Therefore, we set the number of rows in copy number
and gene expression data 2000.

After transforming the expression values to the log-
arithmic scale and the probe IDs to gene symbols as
a data preprocessing, we applied the Extraction of
Expression Modules (EEM) method [7] to the gene
expression data to identify expression modules and to
obtain the activity values of the expression modules.
An expression module is defined as a group of genes,
e.g., genes harboring the same cis-regulatory motif, in
which the members of genes coherently express across
samples. The module activity of an expression module
for each sample is defined as the averaged expression
value among the coherently expressed genes; it well
represents an activity of biological process contributed
by those genes. For the obtained module activity data,
we performed the normalization as well as that of the
mRNA expression data.

2.2 Clustering using IRM

Integrating three types of biological data matrices, we
simultaneously organized three types of features, i.e.,
genes, samples, and modules, into clusters with similar
characteristic each other using the IRM.

2.2.1 Target Distribution of Gibbs Sampling

Let R, R? € RNIXNZ, and R3 € RV’*N’ be data
matrices of DNA copy number, mRNA expression,
module activity, respectively, where N!, N2, and N3
are the numbers of genes, samples, and expression
modules, respectively. To represent cluster assign-
ments of the N' genes, the N? samples, and the
N3 modules, let z',22 2% be vectors of length N,
N2, N3, respectively, where 2} € {1,---,C'} for
i=1,---,N1, 272 € {1,---,C%} for j = 1,--- N2,
and 23, € {l,---,C3} for m = 1,---,N3. Note
that C', C?, and C® are the number of clusters
assigned to each gene, sample, and module. Here, our
goal is to infer the cluster assignments that maximize
the posterior distribution P(z!, 22, 2%|R!, R?, R3) o
P(R'Y,R? R3, 2%, 22, 2%). Assuming that R!, R?, R? are
conditionally independent given the cluster assignments
21, 2%, 2% and that 2!, 22, 2% are independent, this dis-
tribution can be factorized as:

P(R*, R2 R3 2Y 2223

3
HPRt|z 22,28 H

d=1



Here, note that copy number and gene expression
matrix, R', R?, are dependent on cluster assignments
of genes and samples, z',2% and that module activity
matrix, R3, is dependent on cluster assignments of

modules and samples, 23, 22.

We first describe how we can obtain a cluster assign-
ment of the i-th gene. Let R} and R? be i-th row vectors
extracted from R!', R?> and © be a set of parameters.
Fixing cluster assignments of genes other than the i- th
one, z! ., and a vector of sample cluster as&gnments 22
the condltlonal distribution on the i-th gene’s cluster
assignment P(z} = k|zL,, 22 R}, R? ©) can be written

—7

as:
P(z} = k|zL,, 2% R}, R?,0)
x Pz} = k|2t HP (RY|z} = 5 22,0) (1)
where k € {1,---,C'} is a cluster index for genes.

For the assignment of a cluster index to the i-th
gene for each i, we just draw a sample from this
distribution performing the Gibbs sampling. The first
term represents the prior on the i-th gene’s cluster
assignment and the second one does the likelihood of
R} R2.

In the same way, the conditional distribution on the
assignment of the j-th sample and the m-th module can
be given as:

P(z; =1|2%,2",2°R}, R, R}, 0)
x ( —l|z_J HP Rt\z 1,22,,2',2°,0)2)
t=1
P(z3 =p|22,,, 2% R, O)
o Pz, = pl22,) PRy |2 = p, 22, 2°,0) (3)
where [ € {1,---,C?}, p € {1,---,C3} are cluster

indices for samples and modules.

2.2.2 Prior on Cluster Assignments

Using the IRM, we can get the optimal cluster assign-
ments for each data without the numbers of clusters
given a priori. For that purpose, we need to select
the prior on cluster assignments that should encourage
the model to select the number of clusters based on
the data. In case of IRM, the Chinese Restaurant
Process (CRP, [8]) is used as the prior on cluster
assignments. Under the CRP, the distribution over
cluster assignments of N objects can be given as:

= N >0
P(zi =klz—i, N,a) = {N—a1+a (Nk ~ )
—ita (Ne=0)

(4)

where N}, is the number of objects already assigned to
the k-th cluster, and « is a parameter (a > 0).

2.2.3 Generative Models for Continuous Data

In order to analyze continuous matrix data, referring to
the previous work on nonparametric Bayesian models
for continuous data [9], we introduced a generative
model based on the IRM.

We can decompose the likelihood on the i-th gene
over samples as:

2
HP(Rﬂzll =k,2L,,2%,0)
t=1

2 C?

HH H P(R j|z k:z?.:l,zil,ziw@)

2
t=11=1j: 22=|

The likelihood on the j-th samples over genes and mod-
ules, [T,_, P(Rt|22 = 1,22,,2,2%,0), and the likeli-
hood on the m-th module over samples, P(R3 |23 =
p,z3,.,2% 0), can be given in a similar way.

For these formulation, we can simply consider a
generative model for the ¢t-th type of matrix data, Rij
(t € {1,2}), using the (k,l) block parameters, jj, , and
8}, as:

P(Rijlzi =k, 25 =1) = N(R;lujs {sk}7")(6)
where pf ; and s} ; are the means and the precisions
(inverse variances) in the (k,I) block, and N is the
probability density function of the Gaussian distribu-
tion. In case of t = 3, the generative model for R, ;
can be given in the same way as:

PRy, jlzm =p,27 =1) = N(By il {sp07")

(7)

For all ¢ € {1,2,3}, the means, y‘,;“ are given by
Gaussian priors, and the precisions, si’l, are given by
Gamma priors as:

P(/’L;c,lp‘t’ Tt)
P(shal8",w')

NN A3 (8)
G(sk 1B {w'} ™) (9)

where mean, A\, precision, rf, shape, 4¢, mean, {w!}~!,
are the fixed hyperparameters common to all the blocks
for each type of matrix data and G represents the
probability density function of the Gamma distribution.
For t € {1,2}, the conditional posterior distribution
for the means, u}g)l, are given as the product of the
likelihood in the Equation (6) conditioned by the priors
Equation (8), and the conditional posterior distribution
for the means, sk ,» are given as the product of the
likelihood in the Equation (6) conditioned by the priors



Equation (9):

P(lu‘fc,l|zlv 227 Rtv Sz,lv )\tv’rt)
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where ny; is the number of members belonging to the
(k,1) block, and the summations of (,j) in Equation
(10) run among Sk, i.e., (i,j) € Sk, where Sk, is a
set of index pairs (i,j) belonging to the (k,l) block.
For ¢t = 3, we can derive these conditional posterior
distributions in a similar way.
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Figure 2: Graphical representation of the extended
IRM for matrix data, R' (t € {1,2})

Figure 2 shows a graphical model representation for
matrix data, R' (t € {1,2}). For t = 3, we can give the
representation in a similar way. Parameters enclosed
by dashed circles represent the fixed hyperparameters.
Note that, in practice, we need three hyperparameters
for the CRP, a%(d € {1,2,3}), to give priors on
cluster assignments of genes, samples, and modules,
respectively.

2.2.4 Gibbs Sampling for Cluster Assignments

In the IRM, the cluster assignments are obtained by
performing the Gibbs sampling on their conditional
posterior distribution. In our case, we sampled the i-th
gene’s cluster assignment from Equation (1), the j-th
sample’s cluster assignment from Equation (2), and the
m-th module’s cluster assignment from Equation (3).

Algorithm (1) shows the summary of Gibbs sampling in
the extended IRM. As to a new gene cluster where no

Algorithm 1 The Gibbs sampling in the IRM

1: initialize the cluster assignments, z!,22,23, ran-

domly
2: update the parameters, py ;" and si ;" for all the
(k,1) blocks
3: repeat
4:  fori=1to N! (genes), j =1 to N? (samples),
and m = 1 to N3 (modules) do

5: remove the cluster assignment

6: update the mean and precision parameters for
biclusters

7 sample a new cluster assignment from Equa-
tion (1), Equation (2), or Equation (3)

8: update the mean and precision parameters for
biclusters

9:  end for
10: until convergence

gene belongs yet, we can obtain the likelihood pertain-
ing to the new cluster through the integration over the
priors for the means and precisions. Unfortunately, this
integral is not analytically tractable, however, we can
effectively sample these parameters for unrepresented
blocks just by sampling from priors, Equation (8), (9)

[5].

2.3 Search for Drivers and Their
Associated Modules
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Figure 3: Search of prognostic factor candidates from
the simplified clustering result

Utilizing the clustering results obtained by the ex-
tended TRM, we assigned a “representative” value to
each bicluster in data matrices. Suppose that we obtain



C' gene clusters for N genes, C? sample clusters for
N?2 patient samples, and C% module clusters for N3
modules as a clustering result, then we have C' x C?
biclusters for copy number, C'! x C? for gene expression,
and C3 x C? for module activities. Let RL_ .., B2, cas
and R3 . . be data matrices obtained by sorting rows
and columns of R', R?, and R? based on the infered
cluster assignments of genes, samples, and modules.
Since each of the blocks in the sorted matrices is
composed of the similar values, we can represent a
representative value of the block as an average value
of elements belonging to the bicluster. In this way, we
applied a coarse granularization to the clustering results
using D! € RC'XC* D2 ¢ RC'XC* p3 ¢ ROPxC*
matrices where the (k,l) element is the average of
the (k,l) bicluster of R! R? and R?

sorted’ sorted? sorted’
respectively.

Based on the simple interpretation of clustering
results, we searched driver genes and their associated
modules. We distinguished drivers and others based
on the following assumptions: for a driver gene (1)
changes in DNA copy numbers well correlate with its
gene expression levels among individuals; (2) its gene
expression levels well associate with activity levels of
downstream modules. In Figure 3, the more strongly
reddish color blocks have, the larger the average of
the blocks is, and the more strongly bluish color
blocks have, the smaller it is. We selected a gene
cluster (green squared) correlated positively the most
between copy number and expression representative
values (Figure 3(a)) as a group of driver candidates,
and a module cluster (red squared) correlated positively
or negatively the most with the representative values
of gene expression data belonging to the selected gene
cluster (Figure 3(b)) as a set of module candidates
associated with the drivers.

3 Results

3.1 Analysis of CRC Patient Data by
the Extended IRM

We applied our proposed model, the extended IRM,
to the TCGA datasets of CRC patients in order to
obtain an integrative clustering result in which three
types of information, i.e., DNA copy number, gene
expression, module activity, are simultaneously taken
into account as the following manner. For DNA copy
number and mRNA expression, the size of each data
matrix was 2,000 genes x 423 patient samples. For
module activity, the matrix size was 268 modules x
423 patient samples, which was obtained by using
EEM method. Then we applied the extended IRM
to the data matrices to estimate a set of clusters by

using the Gibbs sampling algorithm. Figure 4 (a)
shows the auto-correlation for log likelihood. The blue
dashed line represent 95% confidence intervals based on
uncorrelated series, which tells us that a correlation-
length of the Markov chains is about 20. We generated
total 200 MCMC samples, and to eliminate the auto-
correlation among the samples, we discarded the first
half, 100 MCMC samples, for “burn-in” period. Figure
4 (b) illustrates time series of log likelihood versus
Monte Carlo iterations. We started from 100 clusters
for all the types of clusters and selected one MCMC
sample from the final 100. Figure 5 illustrates the
visualization result of the selected MCMC sample.
Black boundaries on each matrix separate clusters.
Note that only 268 genes (the same number as modules)
are shown in Figure 5 to make the boundaries for
gene clusters clear. FEach column in three matrices
corresponds to the same patient sample, and each
row in copy number and gene expression matrices
represents the same gene. From the results, our
extension of the IRM for continuous data work well
enough to make biclusters exhibiting similar patterns.
From comparison of clustering results on DNA copy
number and mRNA expression, for example, when
DNA copy number and mRNA expression are both
high in several gene x sample blocks, we can see
that copy number amplification may upregulate mRNA
expression of the gene group in the patient sample
cluster. In the same way, when mRNA expression of
a gene cluster and module activity of a module cluster
has a strong correlation, we can find that a regulatory
relationship may exist between genes in the gene cluster
and modules in the module cluster.
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Figure 4: (a) Auto-correlation coefficient of log
likelihood, (b) Log likelihood values of each MCMC
sample

Regardless of the initial value, the number of es-
timated clusters converged to almost the same one.
Figure 6 shows changes in the number of clusters versus
the number of MCMC iterations starting from different
values. Figure 6 shows that approximately 62 to 72
gene clusters, 38 to 45 sample clusters, and 42 to 50



Patient Samples Patient Samples
it Al i WA
|

R A

TOEEE

L
EHOLELT

DNA Copy Numbe; ) = mRN A Ex;;;ression: "

Patient Samples

Modules i

HEErE
Module Activity

Figure 5: Result of Trans-omics clustering for TCGA
CRC patients data using the extended IRM

module clusters were inferred from the data. After
computing the frequency of the number of clusters
and log likelihood in the final 100 MCMC samples,
we selected one MCMC sample exhibiting the highest
frequency in the number of clusters and log likelihood.
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Figure 6: Changes in the number of clusters after
starting from (a) 50 clusters, (b) 100 clusters, and (c)

about 175 clusters

3.2 Identification of Prognostic Factors
from Coarse-grained Signatures

Since clustering of patient samples was performed
based on their genetic and transcriptional data, we
attempted to search for prognostic factor candidates,
indicators of severity of CRC in patients, from obtained
gene clusters and modules ones. In order to achieve the
goal, we applied to the clustering results a coarse granu-

larization that assigns a single “representative” value to
elements in the same cluster in order to extract essential
tendencies by reducing effects of measurement noises,
and represented differences of genetic and transcrip-
tional characteristics across patient samples by coarse-
grained signatures. Specifically, first, we obtained an
average value for each block in the three matrices as
the representative value. After performing the extended
IRM, we got 68 gene clusters, 43 samples clusters, and
50 module clusters, respectively. Therefore, we got 68 x
43 blocks for DNA copy number and mRNA expression
and 50 x 43 blocks for module activity, and prepared
average values representing these blocks.

Next, in order to search for driver gene candidates
showing strong association between copy number and
gene expression and to infer modules that are likely to
be regulated by the genes, we obtained correlation coef-
ficients of averaged copy number and gene expression,
and of averaged gene expression and module activity.
Then we found a gene cluster exhibiting high correlation
coefficient, 0.81, between copy number and gene expres-
sion, and a module cluster positively correlated with
the gene cluster with correlation coefficient 0.75. Here,
we had no module cluster showing a strongly negative
correlation with the gene cluster. Figure 7 illustrates
copy number and gene expression for the gene cluster,
and module activity for the module cluster. 95 genes,
including MAPK4 (mitogen-activated protein kinase 4),
were assigned to the selected gene cluster and 9 modules
were classified as the selected module cluster, and we
found no overlap between genes in the selected gene
cluster and genes in each module assigned to the module
cluster. As the bottom Figure 7 shows, many modules
in the selected module cluster are associated with the
immune system, e.g., the T-Cell receptor signaling
pathway and the interleukin pathway.

Finally, using the clinical information from TCGA,
we investigated the relevance between these selected
clusters and clinical outcome. We separated the 43
sample clusters into two groups, sample group Grign
and Gprow, a highly expressed group and a lowly
expressed one in the selected gene cluster, and into two
groups, sample group My, and Mpewn, an upregulated
group and a downregulated one in the selected module
cluster. Here, we separated sample groups whether the
representative value is higher than the arithmetic mean
or not. The Kaplan-Meier curves for group Ggiqn and
Grow (left) and for group My, and Mpey, (right) are
shown in Figure 8. Interestingly, from the comparison
of two plots in Figure 8, although we could not see
the significant association of the selected gene cluster
with clinical outcome (P=0.442 calculated by log-rank
test), we found that the selected module cluster was
associated with the predicted survival rate significantly
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(P=5.88x10"%). These results indicates the clinical
importance of the modules including the genes related
to the T-Cell receptor and the interleukin, and we
can possibly predict the prognosis of patients from the
activity values in the selected modules.
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4 Discussion

In this study, we presented an integrative biclustering
approach to give us an integrated view of genetic and
transcriptional changes. Many methods are proposed
for the identification of drivers or clinical important
patterns in patients’ gene signatures, however, most of
them focus on only one type of features, either of genes
or patient samples. We need to discover patterns on
genes, samples, and modules to identify a prognostic
factor from drivers and their associated modules. Al-
though we can group each type of features sequentially
(for example, we can classify patient samples after
grouping genes), one of the pros in the simultaneous
clustering approach is to group all the types of features
without placing too high priority on either one type of
them. Furthermore, of existing biclustering approaches,
the IRM allows us to cover multi-dimensional matrix
data without fixing the number of clusters. These
advantages enabled us to extract information on genes,
samples, and modules. Also, this time, we focused
on the association with clinical outcome; however, we
expect that this powerful tool can also provide more
other types of biological insights when combined with
other source of information, e.g., DNA methylation
data and mutation data. Although the presence of
mutation is normally represented as binary data, the
combination of the original IRM and the extended IRM
will easily enable us to analyze both the binary and
continuous data.

After obtaining a clustering result by the extended
IRM, we attempted to derive biologically insightful
information from it. We applied to the clusters a
coarse granularization, which assigns a single “represen-
tative” value to elements in the same cluster in order
to extract essential tendencies by reducing effect of
measurement and biological noises. Although further
biological validation is needed to assert the regulatory
relationship between the genes in the selected gene
cluster and the modules associated with the immune
system, as a result of the macroscopic viewpoint, we
could identify these modules as significant prognostic
factor candidates. Given the discovery that patient
sample groups separated by gene expression patterns of
the selected genes are not associated with the patients’
survival, but those separated by module activity levels
of the selected modules are correlated with it, the
selected modules may be positioned downstream of
regulatory pathways and the activity levels of them
may reflect clinical phenotypes more accurately than
the gene expression levels of the upstream genes.

Through the integrative analysis of multiple types of
biological data, we could result in the identification of
measurable indicators suggesting the severity of CRC.



Our modeling framework allows for other kinds of data
resources, e.g., DNA methylation data, and has the
potential ability to uncover hidden gene regulatory
relationships. We hope that our approach will make
further key contributions in revealing associations of
clinical importance.
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