Learning Individually Fair Classifier with Path-Specific Causal-Effect Constraint

without restrictive functional assumptions?

Yoichi Chikahara^{1,3}, Shinsaku Sakaue², Akinori Fujino¹, Hisashi Kashima³

 1 NTT

² University of Tokyo

Proposed method

<u>Main idea</u>: Make $Y_{A \Leftarrow 0} = Y_{A \Leftarrow 1 \parallel \pi} = 0$ or $Y_{A \Leftarrow 0} = Y_{A \Leftarrow 1 \parallel \pi} = 1$ for all individuals (i.e., regardless of input feature value x)

1. Penalty by upper bound on PIU

To achieve this goal, we force probability of individual unfairness (PIU) to be zero, whose upper bound can be derived as

$$\frac{P(Y_{A \leftarrow 0} \neq Y_{A \leftarrow 1 \parallel \pi}) \leq 2 P^{I}(Y_{A \leftarrow 0} \neq Y_{A \leftarrow 1 \parallel \pi})}{PIU} \cdot \frac{PIU}{upper bound on PIU}$$

 $P^{I}(Y_{A \Leftarrow 0}, Y_{A \Leftarrow 1 \parallel \pi}) = P(Y_{A \Leftarrow 0}) P(Y_{A \Leftarrow 1 \parallel \pi})$ is an *independent joint distribution*, which **can be inferred** from data without any restrictive functional assumptions

To make the upper bound value close to zero, we use the estimator of $P^{I}(Y_{A \leftarrow 0} \neq Y_{A \leftarrow 1 \parallel \pi})$ as penalty function, which is formulated as

$$G_{\theta}(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{n}) = \hat{p}_{\theta}^{A \leftarrow 1 \parallel \pi} (1 - \hat{p}_{\theta}^{A \leftarrow 0}) + (1 - \hat{p}_{\theta}^{A \leftarrow 1 \parallel \pi}) \hat{p}_{\theta}^{A \leftarrow 0}$$

where $\hat{p}_{\theta}^{A \leftarrow 0}$ and $\hat{p}_{\theta}^{A \leftarrow 1 \parallel \pi}$ are estimator of $P(Y_{A \leftarrow 0} = 1)$ and $P(Y_{A \leftarrow 1 \parallel \pi} = 1)$. In **Example 1**, they are given as weighted averages of $c_{\theta}(\mathbf{X}) = P(Y = 1 | \mathbf{X})$: $\hat{p}_{ heta}^{A \Leftarrow 0} = rac{1}{n} \sum_{i}^{n} \mathbf{1}(a_i = 0) \hat{w}_i c_{ heta}(a_i, q_i, d_i, m_i) \quad \hat{p}_{ heta}^{A \Leftarrow 1 \parallel \pi} = rac{1}{n} \sum_{i}^{n} \mathbf{1}(a_i = 1) \hat{w}_i' c_{ heta}(a_i, q_i, d_i, m_i)$

2. Comparison with existing fairness constraint

Our method aims to satisfy the following condition: $\hat{p}_{\theta}^{A \leftarrow 1 \parallel \pi} (1 - \hat{p}_{\theta}^{A \leftarrow 0}) + (1 - \hat{p}_{\theta}^{A \leftarrow 1 \parallel \pi}) \hat{p}_{\theta}^{A \leftarrow 0} \leq \delta.$

By contrast, the existing FIO method [3] imposes the following one:

$$-\delta' \le \hat{p}_{\theta}^{A \Leftarrow 1 \parallel \pi} - \hat{p}_{\theta}^{A \Leftarrow 0} \le \delta'_{+}$$

Figure 1: Feasible regions of our constraint (red) and FIO (blue)

take the same value. holds with high probability.

3. Extension for addressing latent confounders

Marginal probabilities $\hat{p}_{\theta}^{A \leftarrow 0}$ and $\hat{p}_{\theta}^{A \leftarrow 1 \parallel \pi}$ are difficult to estimate when there are unobserved variables called latent confounders.

Nevertheless, if their lower and upper bounds are available, we can achieve individual-level fairness using the following penalty:

$$G_{\theta}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) = \hat{u}_{\theta}^{A \leftarrow 1 \parallel \pi} (1 - \hat{l}_{\theta}^{A \leftarrow 0}) + (1 - \hat{l}_{\theta}^{A \leftarrow 1 \parallel \pi}) \hat{u}_{\theta}^{A \leftarrow 0}$$

3. Unconstrained: imposes no fairness constraint or penalty

Table 2 and Figure 2 shows the test accuracy and the four statistics of unfairness: (i) the expected value of PSEs, (ii) the std. in conditional expected values of PSEs, (iii) Upper bound on PIU, and (iv) PIU.

Met \mathbf{Prc} FIC **PS** Un Ren

0.2 effect 0.1 ınfair Mean M

<u><u></u>⁶ 0.6</u> punoq 0.4 Opper Upper

2018.

³Kyoto University

Experimental results

We compared our method with the following four baselines:

1. FIO [3]: constrains the expected value of PSEs

2. PSCF [4]: aims to reduce the conditional expected value of PSEs

4. Remove [5]: not use any features that are affected by sensitive feature

Table 2: Test accuracy (%) on each dataset

hod	Synth	German	Adult
oposed) CF constrained move	$\begin{array}{c} 80.0 \pm 0.9 \\ 84.8 \pm 0.6 \\ 74.8 \pm 1.6 \\ 88.2 \pm 0.9 \\ 76.9 \pm 1.3 \end{array}$	$75.0 \\78.0 \\76.0 \\81.0 \\73.0$	$75.2 \\81.2 \\73.4 \\83.2 \\74.7$

Proposed achieved comparable accuracy to PSCF.

References

[1] Chen Avin, Ilya Shpitser, and Judea Pearl. "Identifiability of path-specific effects." In IJCAI, pages 357-363, 2005.

[2] Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang Tong. "PC-fairness: A unified framework for measuring causality-based fairness." In NeurIPS, pages 3399–3409, 2019. [3] Razieh Nabi and Ilya Shpitser. "Fair inference on outcomes." In AAAI, pages 1931–1940,

[4] Silvia Chiappa and Thomas PS Gillam. "Path-specific counterfactual fairness." In AAAI, pages 7801–7808, 2019.

[5] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. "Counterfactual fairness." In NeurIPS, pages 4066–4076, 2017.

https://arxiv.org/abs/2002.06746