
Learning Individually Fair Classifier 
with Path-Specific Causal-Effect Constraint

Problem: Learning fair classifier with causal graph Proposed method
Main idea: Make 
for all individuals (i.e., regardless of input feature value      )
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A
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Q D M Y

Female B 0 B Accept
Male A 1 B Reject
Male C 2 C Reject

Training data

Causal graph

Input

: Features of each individual
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X = {A,Q,D,M}

(Given by experts or
estimated from data)

Minimize loss      +
penalty on unfairness
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Fair binary classifier
Output
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h✓̂(X )

Avoid imposing unnecessary fairness constraints 
using causal graph that expresses what is unfair

GenderChildren

Strength

Example 1: Hiring decisions for physically-demanding jobs
Following reasons for rejection is unfair:
1. female ( ) 2. female, has no child (  )
while following is fair: 
3. female, has little physical strength (                     )
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A ! Y
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A ! D ! Y
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A ! M ! Y

To formulate      based on unfair pathways                                           , 
we measure the unfairness as path-specific causal effects (PSEs) [1].
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⇡ = {A ! Y,A ! D ! Y }
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Weaknesses of existing methods
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According to Wu et al. [2], a classifier achieves (path-specific) individual-level 
fairness if the conditional expected value of PSEs is zero for any input     : <latexit sha1_base64="7hSkNT+PzQ+yxEi0VD1V6A+4OFs="></latexit>x
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ways in a causal graph (Avin et al., 2005). Although
prediction Y is not observed but is given by classifier
h✓, we can utilize this measure to quantify the influence
of sensitive feature A on Y via unfair pathways ⇡.

With a path-specific causal e↵ect, this influence is mea-
sured by the di↵erence of the two predictions, which is
obtained by modifying input features X . To illustrate
these predictions, consider a case where sensitive fea-
ture A is gender. Then for each woman (A = 0), one
prediction is made by directly taking her attributes
as input, and another is made with counterfactual at-
tributes, which would be observed if she were male
(A = 1); for each man, these predictions are made
using the counterfactual attributes that would be if he
were female (see, Appendix A.1 for details). Although
such counterfactual attributes are not observed, they
can be computed by a structural equation model (SEM).

An SEM consists of structural equations, each of which
expresses variable V 2 {X , Y } by deterministic func-
tion fV (Pearl, 2009). Each function fV takes as input
two types of variables. One is observed variables, which
are the parents of V in a causal graph, and the other is
unobserved noise UV , which expresses random variable
V using deterministic function fV .

For instance, structural equations over D, M 2 X in
the causal graph in Figure 1(b) may be formulated as

D = fD(A, Q, UD) = A + UDQ,

M = fM (A, Q, UM ) = 3A + 0.5Q + UM ,
(2)

where UD is multiplicative noise and UM is additive
noise. By contrast, the structural equation over pre-
diction Y is formulated using classifier h✓. If h✓ is
deterministic, it is expressed as Y = h✓(A, Q, D, M);
otherwise, Y = h✓(A, Q, D, M, UY ), where UY is a ran-
dom variable used in the classifier. See Appendix A.2.1
for a formal definition of SEM in our setting.

Structural equations (2) can be used to compute the
(counterfactual) attributes of D and M that are ob-
served when A = a (a 2 {0, 1}) as

D(a) = a + UDQ, M(a) = 3a + 0.5Q + UM . (3)

If (3) is available, we can obtain attributes D(0), D(1),
M(0), and M(1) for each individual.

Using these attributes, we can compute a path-specific
causal e↵ect for each individual, which we call an unfair
e↵ect. For instance, when measuring the influence
via unfair pathways ⇡ = {A ! Y, A ! D ! Y } in
Figure 1(b), we define an unfair e↵ect as the di↵erence
of two predictions YA(1k⇡ � YA(0, where YA(0 and
YA(1k⇡ are called potential outcomes and given as

YA(0 = h✓(0, Q, D(0), M(0)),

YA(1k⇡ = h✓(1, Q, D(1), M(0)).
(4)

In (4), the inputs of YA(0 are A = 0, D(0), and M(0),
all of which are given using the same value, a = 0. By
contrast, the inputs of YA(1k⇡ are formulated based
on unfair pathways ⇡; we use the value a = 1 only
for A and D (i.e., A = 1 and D(1)), which correspond
to the nodes on ⇡ = {A ! Y, A ! D ! Y } (see
Appendix A.3 for the formal definition).1

In practice, however, we cannot compute an unfair
e↵ect for each individual. This is because we cannot
formulate an SEM since it requires a deep understand-
ing of true data-generating processes; consequently, for
instance, we can obtain D(a) and M(a) in (3) only for
either a = 0 or a = 1 but not both. Due to this issue,
existing methods use the (conditional) expected values
of unfair e↵ects, which can be estimated from data.

3 EXISTING METHODS AND
THEIR WEAKNESSES

Using unfair e↵ects, two types of existing methods have
been proposed. Unfortunately, as presented in Table 1,
each has a weakness. One requires restrictive functional
assumptions, and the other cannot ensure individual-
level fairness. Below we describe their details.

3.1 Methods for Ensuring Individual-
Level Fairness

The PSCF method (Chiappa and Gillam, 2019) aims to
satisfy the following individual-level fairness criterion:

Definition 1 (Wu et al. (2019b)) Given unfair

pathways ⇡ in a causal graph, classifier h✓ achieves a

(path-specific) individual-level fairness if

EYA(0,YA(1k⇡ [YA(1k⇡ � YA(0|X = x] = 0 (5)

holds for any value of x of input features X.

Condition (5) states that classifier h✓ is individually fair
if the conditional mean unfair e↵ect is zero, which is an
average over individuals who have identical attributes
for all features in X . Since YA(0 and YA(1k⇡ are
expressed using classifier parameter ✓ as shown in (4),
we need to find appropriate ✓ values to satisfy (5).

Unfortunately, such ✓ values can be found only in re-
stricted cases. As pointed out by Wu et al. (2019b), this
is because we cannot always estimate the conditional
mean unfair e↵ect in (5). For instance, when potential

1
We can also consider di↵erent potential outcomes YA(1

and YA(0k⇡, where all inputs of YA(1 are given using the

value a = 1, and YA(0k⇡ is formulated using a = 0 only for

the inputs that correspond to the nodes on pathways ⇡.

PSE: difference of two predictions (i.e.,            and              ) , obtained by 
modifying input feature attributes    . In Example 1, for each woman (A = 0),
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is made by directly taking her observed feature attributes as input
is made with counterfactual attributes, observed if she were male (A = 1)
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YA(1k⇡

How can we learn individually fair classifier 
without restrictive functional assumptions? 
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To achieve this goal, we force probability of individual unfairness (PIU) 
to be zero, whose upper bound can be derived as
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guarantee that potential outcomes take the same value
(i.e., YA(0 = YA(1k⇡ = 0 or YA(0 = YA(1k⇡ = 1)
with probability 1 regardless of the values of X , which
is su�cient to ensure individual-level fairness.

Unfortunately, we cannot directly impose constraints on
PIU. This is because estimating the PIU value requires
the joint distribution of YA(0 and YA(1k⇡, which is
unavailable as described in Section 3.2.

To overcome this issue, instead of PIU, we utilize its
upper bound that can be estimated from data. Specifi-
cally, to make the PIU value close to zero, we formulate
a penalty function that forces the upper bound on PIU
to be nearly zero, which is described in the next section.

4.3 Penalty By Upper Bound on PIU

4.3.1 Upper Bound Formulation

To make the PIU value small, we utilize the following
upper bound on PIU:

Theorem 1 (Upper bound on PIU) Suppose that

potential outcomes YA(0 and YA(1k⇡ are binary.

Then for any joint distribution of potential outcomes

P(YA(0, YA(1k⇡), PIU is upper bounded as follows:

P(YA(0 6= YA(1k⇡)  2 PI(YA(0 6= YA(1k⇡), (7)

where PI
is an independent joint distribution, i.e.,

PI(YA(0, YA(1k⇡) = P(YA(0) P(YA(1k⇡).

The proof is detailed in Appendix C. Theorem 1 states
that whatever joint distribution potential outcomes
YA(0 and YA(1k⇡ follow, the resulting PIU value is at
most twice the PIU value that is approximated with
independent joint distribution PI .

Note that this upper bound can be larger than 1, and
if so, the PIU value is not controlled because PIU is
at most 1. However, since PIU is always smaller than
its upper bound, by making the upper bound close to
zero, we can guarantee that PIU is also close to zero.

4.3.2 Estimating Upper Bound

Using the observed data, we estimate the upper bound
on PIU in (7), which is twice the value of the ap-
proximated PIU. Recall that this approximated PIU
is the probability that potential outcomes YA(0 and
YA(1k⇡ take di↵erent values when they are indepen-
dent. Since potential outcomes are binary, it is ex-
pressed as the probability that potential outcome values

are (YA(0, YA(1k⇡) = (0, 1) or (1, 0); in other words,

PI(YA(0 6= YA(1k⇡)

= P(YA(1k⇡ = 1)(1 � P(YA(0 = 1))

+ (1 � P(YA(1k⇡ = 1)) P(YA(0 = 1).

(8)

Various estimators can be used to estimate marginal
probabilities P(YA(0 = 1) and P(YA(1k⇡ = 1) in (8).
Among them, we utilize the computationally e�cient
estimator in Huber (2014), which can be computed in
O(n) time, where n is the number of training instances.

Let c✓(X ) = P(Y = 1|X ) denote the conditional dis-
tribution provided by classifier h✓; we let c✓(X ) =
h✓(X ) 2 {0, 1} if h✓ is a deterministic classifier. For in-
stance, suppose that the causal graph is given as shown
in Figure 1(b) and that the features of n individuals
are provided as {x i}n

i=1 = {ai, qi, di, mi}n
i=1. Then

P(YA(0 = 1) and P(YA(1k⇡ = 1) can be estimated as
the following weighted averages:

p̂A(0
✓ =

1

n

nX

i=1

1(ai = 0)ŵic✓(ai, qi, di, mi) and

p̂A(1k⇡
✓ =

1

n

nX

i=1

1(ai = 1)ŵ0
ic✓(ai, qi, di, mi),

(9)

where 1(·) is an indicator function, and ŵi and ŵ0
i are

the following weights for individual i 2 {1, . . . , n}:

ŵi =
1

P̂(A = 0|qi)
,

ŵ0
i =

P̂(A = 1|qi, di)P̂(A = 0|qi, di, mi)

P̂(A = 1|qi)P̂(A = 0|qi, di)P̂(A = 1|qi, di, mi)
,

where P̂ is a conditional distribution, which we infer in
the same way as Zhang and Bareinboim (2018a), i.e.,
by learning a statistical model (e.g., a neural network)
from the training data beforehand.2 We derive the
estimators (9) in Appendix D.

In (9), marginal probabilities p̂A(0
✓ and p̂A(1k⇡

✓ are
estimated by taking a weighted average of conditional
probability c✓ over individuals with A = 0 and A = 1,
respectively, which is a widely used estimation tech-
nique called inverse probability weighting (IPW).

4.3.3 Formulating Penalty Function

To learn an individually fair classifier, we force the
estimated value of the upper bound on PIU to be close

2
Note that FIO infers conditional distributions not by

learning statistical models beforehand but by simultane-

ously learning them with the predictive model of Y (Nabi

and Shpitser, 2018). This is because unlike our method, it

addresses not only training a classifier but also learning a

generative model of joint distribution P(X, Y ).

is an independent joint distribution, which can be inferred 
from data without any restrictive functional assumptions
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guarantee that potential outcomes take the same value
(i.e., YA(0 = YA(1k⇡ = 0 or YA(0 = YA(1k⇡ = 1)
with probability 1 regardless of the values of X , which
is su�cient to ensure individual-level fairness.

Unfortunately, we cannot directly impose constraints on
PIU. This is because estimating the PIU value requires
the joint distribution of YA(0 and YA(1k⇡, which is
unavailable as described in Section 3.2.

To overcome this issue, instead of PIU, we utilize its
upper bound that can be estimated from data. Specifi-
cally, to make the PIU value close to zero, we formulate
a penalty function that forces the upper bound on PIU
to be nearly zero, which is described in the next section.

4.3 Penalty By Upper Bound on PIU

4.3.1 Upper Bound Formulation

To make the PIU value small, we utilize the following
upper bound on PIU:

Theorem 1 (Upper bound on PIU) Suppose that

potential outcomes YA(0 and YA(1k⇡ are binary.

Then for any joint distribution of potential outcomes

P(YA(0, YA(1k⇡), PIU is upper bounded as follows:

P(YA(0 6= YA(1k⇡)  2 PI(YA(0 6= YA(1k⇡), (7)

where PI
is an independent joint distribution, i.e.,

PI(YA(0, YA(1k⇡) = P(YA(0) P(YA(1k⇡).

The proof is detailed in Appendix C. Theorem 1 states
that whatever joint distribution potential outcomes
YA(0 and YA(1k⇡ follow, the resulting PIU value is at
most twice the PIU value that is approximated with
independent joint distribution PI .

Note that this upper bound can be larger than 1, and
if so, the PIU value is not controlled because PIU is
at most 1. However, since PIU is always smaller than
its upper bound, by making the upper bound close to
zero, we can guarantee that PIU is also close to zero.

4.3.2 Estimating Upper Bound

Using the observed data, we estimate the upper bound
on PIU in (7), which is twice the value of the ap-
proximated PIU. Recall that this approximated PIU
is the probability that potential outcomes YA(0 and
YA(1k⇡ take di↵erent values when they are indepen-
dent. Since potential outcomes are binary, it is ex-
pressed as the probability that potential outcome values

are (YA(0, YA(1k⇡) = (0, 1) or (1, 0); in other words,

PI(YA(0 6= YA(1k⇡)

= P(YA(1k⇡ = 1)(1 � P(YA(0 = 1))

+ (1 � P(YA(1k⇡ = 1)) P(YA(0 = 1).

(8)

Various estimators can be used to estimate marginal
probabilities P(YA(0 = 1) and P(YA(1k⇡ = 1) in (8).
Among them, we utilize the computationally e�cient
estimator in Huber (2014), which can be computed in
O(n) time, where n is the number of training instances.

Let c✓(X ) = P(Y = 1|X ) denote the conditional dis-
tribution provided by classifier h✓; we let c✓(X ) =
h✓(X ) 2 {0, 1} if h✓ is a deterministic classifier. For in-
stance, suppose that the causal graph is given as shown
in Figure 1(b) and that the features of n individuals
are provided as {x i}n

i=1 = {ai, qi, di, mi}n
i=1. Then

P(YA(0 = 1) and P(YA(1k⇡ = 1) can be estimated as
the following weighted averages:

p̂A(0
✓ =

1

n

nX

i=1

1(ai = 0)ŵic✓(ai, qi, di, mi) and

p̂A(1k⇡
✓ =

1

n

nX

i=1

1(ai = 1)ŵ0
ic✓(ai, qi, di, mi),

(9)

where 1(·) is an indicator function, and ŵi and ŵ0
i are

the following weights for individual i 2 {1, . . . , n}:

ŵi =
1

P̂(A = 0|qi)
,

ŵ0
i =

P̂(A = 1|qi, di)P̂(A = 0|qi, di, mi)

P̂(A = 1|qi)P̂(A = 0|qi, di)P̂(A = 1|qi, di, mi)
,

where P̂ is a conditional distribution, which we infer in
the same way as Zhang and Bareinboim (2018a), i.e.,
by learning a statistical model (e.g., a neural network)
from the training data beforehand.2 We derive the
estimators (9) in Appendix D.

In (9), marginal probabilities p̂A(0
✓ and p̂A(1k⇡

✓ are
estimated by taking a weighted average of conditional
probability c✓ over individuals with A = 0 and A = 1,
respectively, which is a widely used estimation tech-
nique called inverse probability weighting (IPW).

4.3.3 Formulating Penalty Function

To learn an individually fair classifier, we force the
estimated value of the upper bound on PIU to be close

2
Note that FIO infers conditional distributions not by

learning statistical models beforehand but by simultane-

ously learning them with the predictive model of Y (Nabi

and Shpitser, 2018). This is because unlike our method, it

addresses not only training a classifier but also learning a

generative model of joint distribution P(X, Y ).

To make the upper bound value close to zero, we use the estimator of
as penalty function, which is formulated as
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G✓(x 1, . . . ,xn) = p̂A(1k⇡
✓ (1� p̂A(0

✓ ) + (1� p̂A(1k⇡
✓ )p̂A(0

✓

where           and              are estimator of     s o                  and                           .
In Example 1, they are given as weighted averages of                                      :                                        

,

1. Penalty by upper bound on PIU

2. Comparison with existing fairness constraint
Our method aims to satisfy the following condition:

By contrast, the existing FIO method [3] imposes the following one:

3. Extension for addressing latent confounders

.

Marginal probabilities           and              are difficult to estimate 
when there are unobserved variables called latent confounders.

.

Nevertheless, if their lower and upper bounds are available,
we can achieve individual-level fairness using the following penalty:
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✓

Experimental results
We compared our method with the following four baselines: 
1. FIO [3]: constrains the expected value of PSEs
2. PSCF [4]: aims to reduce the conditional expected value of PSEs
3. Unconstrained: imposes no fairness constraint or penalty
4. Remove [5]: not use any features that are affected by sensitive feature

Table 2 and Figure 2 shows the test accuracy and the four statistics of 
unfairness: (i) the expected value of PSEs, (ii) the std. in conditional 
expected values of PSEs, (iii) Upper bound on PIU, and (iv) PIU.
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Figure 2: Four statistics of unfairness on test data

Proposed achieved comparable
accuracy to PSCF.

With Proposed, all unfairness 
statistics were close to zero.

References

PSCF failed to reduce the 
std. in conditional expected 
values of PSEs (i.e., (ii)) 
because the data violates the 
functional assumptions.

Figure 1: Feasible regions of our constraint (red) and FIO (blue)
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holds with high probability.
It is uncertain whether          and
take the same value.
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YA(1k⇡

For more details,  please check out our paper!

Table 2: Test accuracy (%) on each dataset

Table 1: Comparison with existing methods


