Causal Inference in Time Series via Supervised Learning

Yoichi Chikahara, Akinori Fujino NTT COMMUNICATION SCIENCE LABORATORIES

MAIL: chikahara/index-e.html

Problem Setting

• <u>Causal inference in time series</u>: A knowledge discovery task

Input: Time Series Data

Output: Causal Relationships

• <u>Granger causality</u>:

X is the cause of Y

if the past values of X are **helpful in predicting** the future values of Y

Weak Points in Existing Methods

Approach:

Fit (two) regression models
Compare prediction errors

Weak Points:

ECA

No need to select

Main Contribution

Propose a **<u>supervised learning approach</u>** to Granger causality identification problem that **requires no selection of regression models**

Feature Representation

To design classifier based on the above ideas, we utilize the distance between mapped points (maximum mean discrepancy; MMD) to obtain feature vectors \widehat{MMD}_{V}^{2}

 $X \leftarrow Y_{n_{1}}$ $X \leftarrow Y_{n_{1}}$ $Y \land No \ Causation$ $Y \land No \ Causation$ $Y \land No \ Causation$

We can expect estimated MMDs to be sufficiently different depending on causal directions

Extension to Multivariate Time Series

Experimental Results

0.8	(Synthetic data) (Synthetic data) (Synthetic data) (Synthetic data) (Synthetic data) (Inear to Nonline (Nonline)	No No No Cau time series from VAR me time series from VAI	odel R + sigmoid	ation	$\mathbf{GC}_{\mathbf{VA}}$		0.6 0.4 0.4 0.2		0.2 0.2	100 140 Fime Series Le -world	ngth multiva	$\frac{1}{240}$	could no	<u>s</u>	fitted to) data
)	e.g., River Runoff:		SIGC	RCCLE	\mathbf{GC}_{VAR}	\mathbf{GC}_{GAM}	\mathbf{GO}_{KER}	<u>TE</u>	$-\frac{\sqrt{1}}{100}$ Yeast ce	<u>ll cycle g</u>	ene expre	ession da	ta (14 gen	es)		
		$\begin{array}{l} Temperature \\ (T = 200) \end{array}$	0.961 (0.011)	0. <mark>4</mark> 32C (0.242)C	0.950	0.848	0.234	0.492		SIGC _{tri}	SIGC _{bi}	RCC	\mathbf{GC}_{VAR}	\mathbf{GC}_{GAM}	\mathbf{GC}_{KER}	TE
)	X: Precipitation	Radiation $(T = 200)$	0.987 (0.053)	0.515C (0.545)CC	0.156	0.0	0.782	0.394	macro F1	0.483 (0.0)	0.431 (0.007)	0.407 (0.096)	0.457	0.437	0.351	0.430
	Y: River runoff	$Internet \\ (T = 200)$	10 (0.0)	(0.222)	0.157	0.387	0.261	0.498	micro F1	0.637	0.578	0.567 (0.161)	0.567	0.513	0.436	0.449
$2 X_{t+}$	True causality:	Sun Spots (T = 200)	1.0 (0.0)	$0.435 \\ (0.182)$	0.908	0.704	0.076	0.522		(0.0)	(0.011)	(0.101)				
	$X \to Y$	River Runoff (T = 200)	0.958 (0.058)	$0.399 \\ (0.193)$	0.684	0.406	0.155	0.485								