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Revisiting definition of Granger causality 

if the following holds: 
X Y 

cause effect 

X 
Y 

t 

Distribution of Yt+1  
given past values of Y 

Distribution of Yt+1  
given past values of Y and X ≠ 

SX is useful in prediction! 
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Existing approach:  
Compare prediction errors with/without using values of X 

If errors are significantly reduced 
by using values of X,  

X Y 
cause effect 

Y 

X 

Y 
t 

(Two) Regression 
Models 

Y 

X 

Y 

Predicted Values 
Prediction Errors 
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Causal inference in time series 

• Given time series data 
• Infer causal relationships between variables 

Input: Time Series Data 

X 

Y 

X Y 
cause effect 

Output: Causal Relationships 
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Main Contribution

Problem Setting
• Causal inference in time series: A knowledge discovery task

• Granger causality:
X is the cause of Y 
if the past values of X are helpful in predicting the future values of Y

1)Fit (two) regression models 
2)Compare prediction errors 

Weak Points:Approach:

Propose a supervised learning approach to Granger causality 
identification problem that requires no selection of regression models

Weak Points in Existing Methods

Ideas for Classifier Design

Experimental Results

Granger causality definition:
✓ X is the cause of Y

if
✓ X is not the cause of Y
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Revisiting definition of Granger causality 

if 

X Y 

X Y 
if 

A classifier that assigns labels by following rule can infer Granger causality
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Feature Space 
(RKHS) 

Representing features of distributions 

• Kernel mean embedding: map a distribution  
to a point in feature space called RKHS 

When using Gaussian kernel, 

Kernel embedding: Map a distribution to a point in feature space

1. Linear / Nonlinear synthetic time series
formance with the random forest classifier than with the SVM
[Lopez-Paz et al., 2015]. To prepare feature vectors, we used
the Gaussian kernel as kX , kY , and kD and set the kernel
parameter using the median heuristic, which is a well-known
heuristic for selecting it [Scholkopf and Smola, 2001]. We
set the parameter W in our method and the parameters in the
existing methods to provide the best performance for each
method in our synthetic data experiments. For our method,
we selected W = 12.

5.2 Experiments on Bivariate Time Series Data
Classifier Training
We trained a classifier to infer causal relationships from bi-
variate time series data.

As with the existing supervised learning methods [Bon-
tempi and Flauder, 2015; Lopez-Paz et al., 2015; 2017], we
used synthetic training data in both synthetic and real-world
data experiments since there are few real-world data where
the causal relationships are known.

We generated 15, 000 pairs of synthetic time series with the
length T = 42 so that there were 5.000 instances each with
causal labels X ! Y , X  Y , and No Causation. Here, we
used the following linear and nonlinear time series:

• Linear time series were sampled from the VAR model:

h
Xt
Yt

i
=

1

P

PX

⌧=1

A⌧

h
Xt�⌧
Yt�⌧

i
+
h
EXt

EYt

i
(13)

where ⌧ = 1, · · · , P (P 2 {1, 2, 3}) and EXt , EYt were
sampled from the Gaussian distribution N (0, 1). To ob-
tain time series with X ! Y , we used the following
coefficient matrix

A⌧ =
h
a⌧ 0.0
c⌧ d⌧

i

where a⌧ , d⌧ were drawn from the uniform distribution
U(�1, 1), and c⌧ 2 {�1, 1}. Similarly, we prepared
time series with X  Y , and No Causation.

• Nonlinear time series were also similarly generated by
using the VAR model with a standard sigmoid function
g(x) = 1/(1+exp(�x)). For instance, we prepared time
series with X ! Y so that Yt depended on {[g(Xt�⌧ ),
Yt�⌧ ]>}P⌧=1 while Xt depended only on {Xt�⌧}

P
⌧=1.

• Finally, we scaled each time series with mean 0 and vari-
ance 1.

Synthetic Time Series
Next, we tested the performance of our method for inferring
causal relationships (X ! Y , X  Y , and No Causation)
from synthetic time series data. We used the following linear
and nonlinear test data:

• Linear Test Data: We prepared 300 pairs of linear time
series so that the numbers of time series with X ! Y ,
X ! Y , and No Causation were 100. In a similar way
to the linear time series in the training data, each time
series was sampled from the VAR model (13) although
several parameter settings were different (e.g., the noise
variance was given as p 2 {0.5, 1.0, 1.5, 2.0}).
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Figure 2: Test accuracies for 300 pairs of time series data against
time series length (left: linear test data; right: nonlinear test data).
Means and standard deviations (error bars) are shown for our method
and RCC based on 20 runs with different training data.

• Nonlinear Test Data: We used 300 pairs of nonlinear
time series, where there were 100 time series with X
! Y , X ! Y , and No Causation in each dataset. We
generated nonlinear time series with X ! Y by

Xt = 0.2Xt�1 + 0.9EXt (14)

Yt = �0.5 + exp(�(Xt�1 +Xt�2)
2)

+ 0.7 cos(Y 2
t�1) + 0.3EYt (15)

where the noise variables EXt , EYt were sampled from
N (0, 1). Similarly, we prepared nonlinear time series
with X Y . To prepare time series with No Causation,
we simply ignored the exponential term in (15).

Using linear and nonlinear test data, we compared the per-
formance of our method with that of the existing methods.
Fig. 2 shows the test accuracies. Note that for SIGC and
RCC, we show the means and the standard deviations (er-
ror bars) in 20 experiments with different training data since
these methods use randomly generated training data.

The performance of the Granger causality methods
(GCV AR, GCGAM , and GCKER) depended on whether or
not the regression model could be well fitted to the data. For
instance, since the VAR model could be well fitted to linear
test data, GCV AR performed well on linear test data although
it worked badly on nonlinear test data. In addition, with non-
linear test data, GCKER was less accurate than GCGAM be-
cause the time series was too short for us to perform kernel
regression. Similarly, TE worked poorly since the time series
was too short for us to perform density estimation.

In contrast, our method worked sufficiently well on linear
and nonlinear test data. The main reason for the good per-
formance lies in our feature representation. This can be seen
from a comparison with the supervised learning method RCC
since it prepares training data in the same way as our method.

To verify our feature representation, we confirmed experi-
mentally that feature vectors are sufficiently different depend-
ing on causal labels. To do so, we used nonlinear test data to
plot a histogram of the MMD pairs {dt} that were used to
compute the feature vector for each time series. Fig. 3 shows
the results. Since each MMD in dt is a finite sample esti-
mate, no MMD becomes exactly zero. However, we can see
that the MMDs became sufficiently different according to the
causal labels. We obtained similar results with linear test data
although we have omitted them due to space limitations.

3. Real-world multivariate time series

No Causation
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Figure 3: Histogram of MMDs used to compute the feature vector
for each time series in nonlinear test data with X ! Y (top left), X
 Y (top right), and No Causation (bottom).

In fact, since the MMD pairs are sufficiently different, we
can assign the causal label by taking another approach, i.e.,
an unsupervised approach that uses no training data, which
outputs the causal label in two steps. First, using the MMD
pairs, the two statistical tests are performed to determine if
the mean of \MMD

2

Xt+1
is zero and if the mean of \MMD

2

Yt+1

is zero. Then, by using the two p-values and some threshold
value (significance level), we can assign a causal label (X !
Y , X  Y , or No Causation) to each time series.

However, we confirmed experimentally that the perfor-
mance of such an unsupervised approach depended greatly
on the threshold value. Furthermore, it was less accurate than
our method (e.g., on nonlinear test data with the length T =
250, its test accuracy was 0.810 (not shown in Fig. 2) while
our method achieved 0.966) although we selected the thresh-
old value that provided the best performance. These results
suggest the effectiveness of our supervised learning approach,
which can obtain the decision boundary needed to determine
the causal label by training a classifier.

Real-world Time Series
We tested our method by using real-world time series. To im-
prove the reliability of the experiment, we used the following
two test datasets:

• The first test dataset was composed of five pairs of bi-
variate time series downloaded from the Cause-Effect
Pairs database [Jakob, ], whose true causal relationships
are reported in [Jakob, ] as X ! Y for three pairs and
as X  Y for the others. For instance, the River Runoff
is a bivariate time series concerning average precipita-
tion X and average river runoff Y , and the true causal
relationship is regarded as X ! Y .

• Using the above five real-world time series, we prepared
a second test dataset that consisted of subsequences in
each time series. To prepare the subsequences, we sim-

SIGC GCV AR GCGAM GCKER TE
Temperature

3 7 3 3 7(T = 16382)
Radiation

3 3 3 3 3(T = 8401)
Internet

3 3 7 7 3(T = 498)
Sun Spots

3 7 7 7 3(T = 1632)
River Runoff

3 3 3 7 3(T = 432)

SIGC RCC GCV AR GCGAM GCKER TE
Temperature 0.961 0.432 0.950 0.848 0.234 0.492(T = 200) (0.011) (0.242)
Radiation 0.987 0.515 0.156 0.0 0.782 0.394(T = 200) (0.053) (0.345)
Internet 1.0 0.478 0.157 0.387 0.261 0.498(T = 200) (0.0) (0.222)
Sun Spots 1.0 0.435 0.908 0.704 0.076 0.522(T = 200) (0.0) (0.182)
River Runoff 0.958 0.399 0.684 0.406 0.155 0.485(T = 200) (0.058) (0.193)

Table 1: Causal relationships inferred from the first test dataset (top;
3and 7 denote correct and incorrect results, respectively) and test
accuracies for the second test dataset (bottom; Means and standard
deviations are shown for SIGC and RCC based on 20 runs).

ply chopped each time series into multiple subsequences
of length T = 200.

As regards training data, we used synthetic time series that
we prepared in the same way as those for synthetic data ex-
periments.

Table 1 shows the result for each test dataset. Note that
we have omitted RCC from the top table in Table 1 because
it showed different outputs in 20 experiments where different
training data were used as in the synthetic data experiments,
while our SIGC always output the same causal directions. As
shown in Table 1, our SIGC outperformed the other existing
methods regardless of the time series length T .

5.3 Experiments on Multivariate Time Series Data
We tested SIGCtri, which utilizes a feature representation
for trivariate time series. For classifier training, we used syn-
thetic trivariate time series that were generated in a similar
way to those used in the experiments described in Section
5.2. As test data, we used the following time series gene ex-
pression data:

• We used the Saccharomyces cerevisiae (yeast) cell cycle
gene expression dataset collected by [Spellman et al.,
1998]. By combining four short time series that were
measured in different microarray experiments, we pre-
pared a time series with the length T = 57, where the
number of genes was n = 14. To determine the true
causal relationships between the genes, we used the gene
network database KEGG [KEGG, 1995].

Since the number of non-causally-related gene pairs was
much larger than the number of causally-related gene pairs,
we evaluated the performance of each method in terms of the
macro and micro-averaged F1 scores rather than test accu-
racy.

SIGCtri SIGCbi RCC GCV AR GCGAM GCKER TE

macro F1 0.483 0.431 0.407 0.457 0.437 0.351 0.430(0.0) (0.007) (0.096)

micro F1 0.637 0.578 0.567 0.567 0.513 0.436 0.449(0.0) (0.011) (0.161)

Table 2: Macro and micro-averaged F1 scores. Means and standard
deviations are shown for our methods and RCC based on 10 runs.

Table 2 shows the results. Since the data were measured
in different microarray experiments, all the methods could
not sufficiently work well. However, our SIGCtri worked
better than the existing Granger causality methods. It also
performed better than SIGCbi, which uses the feature rep-
resentation for bivariate time series, thus indicating that it is
important to consider the influence of the common cause vari-
able as described in Section 3.3.

6 Conclusions
We have proposed a classification approach to Granger
causality identification. Whereas the performance of the
model-based methods depended hugely on whether the re-
gression model could be well fitted to the data, our method
performed sufficiently well by using the same feature repre-
sentation and the same classifier (random forest classifier).
Furthermore, we demonstrated experimentally the reason for
such good performance by showing a sufficient difference be-
tween the feature vectors that depends on Granger causality.
These results demonstrate the effectiveness of classification
approaches to Granger causality identification.

Addressing complicated real-world scenarios (e.g., infer-
ring the causal directions that change over time) constitutes
our future work.
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Experimental Setting Our method worked sufficiently better

Existing methods worked 
poorly when regression models 
could not be well fitted to data

2. Real-world bivariate time series

e.g., River Runoff: 

X: Precipitation 
Y: River runoff 

True causality: 

✓ Yeast cell cycle gene expression data (14 genes)
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X Y 
Data1 

Which regression model  
should I use ? 

X Y 

X Y 

Data2 

Data3 

…
 

…
 

…
 

VAR 
Model 

Gaussian 
Processes 

GAM 

Weakness of existing approach 

Model misspecification leads to low inference accuracy 
Model misspecification  
leads to low inference accuracy 
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Classifier 

Test Data 

Training Data 

... 

Our approach: 
Causal inference via supervised learning  

No need to select  
regression models! 

Review
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Revisiting definition of Granger causality 

if X Y 
cause effect 

X 
Y 

X Y if 

Granger causality defines that 

t 

11 Copyright©2018  NTT corp. All Rights Reserved. 

Building a classifier for Granger causality identification 

If 

If 

If 

then 

then 

then 

Label Assignment Rules  
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Building a classifier for Granger causality identification 

If 

If 

If 

then 

then 

then 

Label Assignment Rules  
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Building a classifier for Granger causality identification 

If 

If 

If 

then 

then 

then 

Label Assignment Rules  

Feature Representation

Review By using kernel embedding, the above assignment rules are reformulated as
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• By mapping distributions to points,                           
label assignment rules can be rephrased as 

Feature Space 

Reformulating label assignment rules  

If 

If 

If 

then 

then 

then 

Feature Space 
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• By mapping distributions to points,                           
label assignment rules can be rephrased as 

Feature Space 

Reformulating label assignment rules  

If 

If 

If 
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then 

then 

Feature Space 
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• By mapping distributions to points,                           
label assignment rules can be rephrased as 

Feature Space 

Reformulating label assignment rules  

If 

If 

If 

then 

then 

then 

Feature Space 
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Distance 
(MMD) 

Whether or not distance between points is zero 
is important  

To design classifier based on the above ideas, we utilize the distance 
between mapped points (maximum mean discrepancy; MMD) to obtain 
feature vectors 
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Feature representation 

... 

• By utilizing MMDs, we can obtain feature vectors 
that are sufficiently different depending on Granger 
causality  

We can expect estimated MMDs to be sufficiently different 
depending on causal directions

Extension to Multivariate Time Series
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Granger causality definition for 
multivariate time series 

• Conditional Granger causality [Geweke JASA1984]: 
compare two conditional distributions given past 
values of the third variable Z 

if X Y 

X Y if 

Z 

Z 

Review Conditional Granger causality:
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Feature representation 

• Similarly, we map conditional distributions to points 
in feature spaces and measure the distance 
 
 

 
 

 
 

• By using additional MMDs, we formulate feature 
representation for multivariate time series 

Based on conditional 
Granger causality definition, 
we similarly estimate MMDs 
to obtain feature vectors for 
multivariate time series
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Classifier 
（Random Forest） 

Experiments 

Test Data 

Training Data 
(Synthetic data) 

... 

16 Copyright©2018  NTT corp. All Rights Reserved. 

Classifier 
（Random Forest） 

Experiments 

Test Data 

Training Data 
(Synthetic data) 
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Classifier 
（Random Forest） 

Experiments 

Test Data 

Training Data 

• linear time series from VAR model 
• Nonlinear time series from VAR + sigmoid 

... 

Causal Inference in Time Series via Supervised Learning

cause effect

Prediction Errors
Predicted Values
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Classifier 
（Random Forest） 

Experiments 

Test Data 

Training Data 
(Synthetic data) 

... 

Both distributions are  
given past values of third variable Z

Distribution

extended definition for multivariate case
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