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Problem setup: CATE estimation from high-dimensional observational data

Input Observational data D'XP(4,X,Y)

Output Conditional Average Treatment Effect (CATE) Ditficulty in high-dimensional setup:

Treatment Features Outcome Potent1a1 outcomes — mlvl 0 . 1. We often have little prior knowledge about features X
A € {0,1} CATE (x) T [Y —Y ‘X = X ] 2. Confounders and adjustment variables are often intertwined
Average treatment effect across individuals Confounder Adjustment variable
with identical feature attributes X = x (e.g., age (e.g., smoking habit)
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Weighted representation learning

Existing Approach: Data-driven feature separation

0.
0.0

is predictive of
potential outcome ©

leads to
sample selection bias ®

Question:
Can we remove sample selection bias due to confounders
while keeping predictive information of adjustment variables?

Proposed method

Proposed method: Pareto smoothing + Differentiable ranking

Features X

adjustment
variables

znstrumenta
confounders

A~m(T(x), A(x)) = h%(A(x), Y (x))

1. F1t propensity score r(+) by
min —— Z(a’ log(m(I'(x;), A(x))) + (1 — a;)log(1 — n(T'(x;), A(x,)))) + A, Q(m)

Binary cross entropy loss

2. TramF() A(),Y(), h° (), h* () by

min Zw,l(y,,h“’(A(xl) (1)) + ArMMD (1Y@} (X} )+ AR (T A, YL RO, 1)
CAYRR N

Penalize dependence
of Y(X)on A
PI'(x;), Alx) |A=a) PA(x),Alx)[A=1-a)
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Welghted prediction loss

where w; =

Weakness: Inverse probability weight w; is numerically unstable:
Even slight propensity score estimation error leads to large CATE estimation error

Weight smoothing with Pareto smoothing

Advantage:
1. Can obtain a less biased estimator than weight truncation
2. Can be combined with self-normalization

Main idea Improve CATE estimation stability by Pareto smoothing

e Pareto smoothing [Vehtari+; ]JMLR2024]: Replace the M + 1 largest importance sampling weight values
with inverse CDF of generalized Pareto distribution
i—(n—M)-1/2
M

wi =1 =n - M"‘l)F_l( )+(1—I(i2n—M+1))w[,-]

where wpp < --- < W[n]’M:mm{{ J L3\/_J} and F(w):{ 1_(1+

* Need to compute rank r = r(w):
* Example: If w3 < w; < wy, since wy = Wy, W = Wzp, W3 = Wy, T = [2, 3, 1]

4 . e —————
Ve (e=0.1)
3 Hoo Ve (€=0.2) - 1] Figure 2: Illustration of rank function r = r(w) (black) and
7, differentiable rank functions r = r.(w) (orange and green).
E Here we take input vector w = [wy, 1,2, 3], vary w;’s value,
0 R— H and look at how its rank r; € r changes. When regularization
parameter € — 0, r, converges to r [Blondel et al., 2020].
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Difficulty: r(w) is piecewise constant: Gradient is always zero or undefined.
We cannot perform gradient back propagation ®

GitHub code link: [x]
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Compute differentiable rank
of each IPW weight

[PW Weights

Extreme weights suffer from
large estimation error ®

Generalized Pareto Distribution CDF

Differentiable weight
correction via inverse CDF

Corrected Weilght value

End-to-end weighted representation learning

for CATE estimation from hi_gh—dimensional observational data

Algorithm 1 Differentiable Pareto-Smoothed Weighting
(DPSW)

1. Initialize the parameters of I', A, ', 7, h0, and h!
2: while not converged do
3:  while not converged do

1. Approximate non-ditferentiable rank function r
with differentiable one

 Fast soft rank [Blondel+; ICML2020]:

Approximate as a solution to regularized LP 4: Sample mini-batch from D = {(a;, x;, yi)}.,
5: Update 7 by minimizing cross entropy loss in (2)
2.  Approximate indicator function with sigmoid 6: end while
1 7 WhSlle n(it copv.e{)gedhdfo D y
; N\~ S e— 8: ample mini-batch from D = {(a;, x;, yi)}_
I(l = J) B g(l, J) T 1 + e—«G=)) 9: for instance i in mini-batch do 1
oo . . 10: Compute weight w; by (4)
Combining 1. & 2. leads to the following weight 1. endfor
. 12: Compute differentiable rank r = r.(w)
I eplacement formula’ 13: Estimate GPD parameters as fi, &, and &
N o~ ri—(m—-—M) -1 /2 14: for instance i in mini-batch do
= ¢ (l”' n— M + 1) F { 15: Replace each weight w; with w; in (20)
M 16: end for
+ (1 _ S‘(ri, n— M+ 1)) W, 17: Update I, A, Y, h°, and A' by minimizing predic-
] tion loss in (3) with Pareto-smoothed weights {w;}
where /(x) := min{max{x, 0}, 1} 18:  end while

19: end while

Experimental results:

Semi-synthetic data Synthetic data

Randomly generate features as

[Xr, X5, X]T € RY (d = 15,18,...,30)
Table 1: Mean and standard deviation of test PEHE on semi- o o

synthetic datasets (Lower is better) Measure the relative difference of

average absolute values of

Method News (d =3477) ACIC(d=177)  the first-layered weight submatrices, e.g.,
LR-1 3.35 + 1.28 0.72 + 0.07 —
LR-2 536 + 1.75 3.82 +0.15 W-Wl where W' = (WL W! ]
1
SL 283+ 1.11 1.69 + 0.52 Worl
TL 755+0.82 723 +0.50 (a) Relative difference between [Wi| and [Wlr| (b) Relative difference between [W;| and [W.,|
’ - " : - " 0.6 0.6
XL 277+ 1.01 1.05+0.72
DRL 23.9 £ 5.96 377 + 8.96 0.4 0.4
CF 3.84 +1.67 3.55+0.19 02 | 0.2
CF DML 2.69 + 1.06 1.18 +0.32
0.0 0.0
TARNet 4.92 + 1.80 331 +0.51 V
GANITE 2.68 + 0.66 3.69 + 0.77 02l L TR
umber of features Number of features d
DRCFR 2.38 + 0.66 0.98 + 0.07 Humber offaures @
DRCFER Norm. 737 + (.94 073 +0.12 (¢) Relative difference between [Wy| and [Wy]| (d) Test PEHE
+ 0. e B ol U B 06
DRCEFR Trunc. 242 +0.79 1.06 + 0.06
PSW 4.03+1.35 0.71 = 0.01 0.4
DPSW 2.20 + 0.72 0.57 + 0.03 . ,
DPSW Norm. 2.10 + 0.66 0.52 + 0.16
—+— DPSW
0.0 —}— DRCFR
—}— TARNet
—0.2 0.0
15 18 21 24 27 30 15 18 21 24 27 30
Number of features d Number of features d
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