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Figure 1: Graphical model illustration of DRCFR method

variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.

To learn the representations of such features, DRCFR mini-
mizes the weighted loss by computing the weights based on
the inverse of propensity scores, given by ⇡(�(X),�(X)).

A strong advantage of DRCFR is that it can avoid losing the
information of adjustment variables, represented by ⌥(X),
which is useful for outcome prediction. However, since
the inverse of conditional probability, ⇡(�(X),�(X)), often
yields extreme values, under finite sample settings, even a
slight estimation error of ⇡ leads to a large weight estimation
error. This numerical instability of weight estimation makes
it di�cult to achieve high CATE estimation performance.

3 PROPOSED METHOD

To improve the estimation stability of weighted representa-
tion learning, we propose a di↵erentiable weight correction
framework that can be used in an end-to-end fashion.

3.1 OVERVIEW

To estimate the CATE in (1), following DRCFR [Hassan-
pour and Greiner, 2020], we perform weighted representa-
tion learning. We learn three model components: the feature
representations (i.e., �(X), �(X), and ⌥(X) in Figure 1),
propensity score model ⇡(�(X),�(X)), and outcome predic-
tion models h

0(�(X),⌥(X)) and h
1(�(X),⌥(X)), where h

0

and h
1 are used to predict potential outcomes Y

0 and Y
1.

DRCFR jointly optimizes these three model components
by minimizing the weighted loss. However, we empirically
observed that such a joint optimization is di�cult. A pos-
sible reason is that the loss function dramatically changes
with the IPW weights and hence substantially varies with
the parameter values of propensity score ⇡. For this reason,
we separately learn ⇡ and perform an alternate optimization
that repeatedly takes the following two steps.

First, we learn propensity score ⇡ (while the fixing other
model parameters) by minimizing the cross entropy loss:

min
⇡
�

1
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⇣
ai log(⇡(�(xi),�(xi)))

+ (1 � ai) log(1 � ⇡(�(xi),�(xi)))
⌘
+ �⇡⌦(⇡), (2)

where ⌦(·) is a regularizer that penalizes the model com-
plexity, and �⇡ > 0 is a regularization parameter.

Second, we learn the other model parameters (with ⇡’s pa-
rameters fixed) by minimizing the weighted loss:

min
�,�,⌥,h0,h1
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⌘
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where wi is the weight that is given by propensity score
⇡(�(xi),�(xi)), l is the prediction loss for outcome yi, �⌥ > 0
and ��⇡ > 0 are regularization parameters,1 and MMD de-
notes the kernel maximum mean discrepancy (MMD) [Gret-
ton et al., 2012], which measures the discrepancy between
empirical conditional distributions P̂(⌥(X) | A = 0) and
P̂(⌥(X) | A = 1). Regularizing this MMD term prohibits ⌥
from having any information about treatment A, thus making
⌥(X) a good representation of the adjustment variables.

To achieve a high CATE estimation performance, how to
compute the weight value (i.e., wi in (3)) is essential. In the
DRCFR method [Hassanpour and Greiner, 2020], weight
is formulated using importance sampling, which employs
a density-ratio-based weight to construct a weighted esti-
mator of expected value. To estimate the expected outcome
prediction losses over the observed individuals (A = ai) and
the unobserved individuals (A = 1� ai), DRCFR formulates
the weight as the sum of two density ratios:

wi =
P(�(xi),�(xi) | A = ai)
P(�(xi),�(xi) | A = ai)

+
P(�(xi),�(xi) | A = 1 � ai)
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P(A = 1 � ai | �(xi),�(xi))

P(A = 1 � ai)
P(A = ai)

P(A = ai|�(xi),�(xi))

= 1 +
P(A = ai)

P(A = 1 � ai)
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P(A = ai | �(xi),�(xi))
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1
⇡ai

(�(xi),�(xi))
,

where ⇡ai
(X) = ai⇡(X) + (1 � ai)(1 � ⇡(X)). Here weight

wi is proportional to the inverse of propensity score
⇡ai

(�(xi),�(xi)). Since such an IPW weight often takes an
extreme value, the weight estimation is numerically unsta-
ble, leading to inaccurate CATE estimation. This issue is
serious in a high-dimensional setup due to the di�culty of
correctly estimating propensity scores [Assaad et al., 2021].

1
�⇡ denotes the other model components than ⇡.
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variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.
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variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.

To learn the representations of such features, DRCFR mini-
mizes the weighted loss by computing the weights based on
the inverse of propensity scores, given by ⇡(�(X),�(X)).

A strong advantage of DRCFR is that it can avoid losing the
information of adjustment variables, represented by ⌥(X),
which is useful for outcome prediction. However, since
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error. This numerical instability of weight estimation makes
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variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.

To learn the representations of such features, DRCFR mini-
mizes the weighted loss by computing the weights based on
the inverse of propensity scores, given by ⇡(�(X),�(X)).

A strong advantage of DRCFR is that it can avoid losing the
information of adjustment variables, represented by ⌥(X),
which is useful for outcome prediction. However, since
the inverse of conditional probability, ⇡(�(X),�(X)), often
yields extreme values, under finite sample settings, even a
slight estimation error of ⇡ leads to a large weight estimation
error. This numerical instability of weight estimation makes
it di�cult to achieve high CATE estimation performance.
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To improve the estimation stability of weighted representa-
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by minimizing the weighted loss. However, we empirically
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sible reason is that the loss function dramatically changes
with the IPW weights and hence substantially varies with
the parameter values of propensity score ⇡. For this reason,
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P̂(⌥(X) | A = 1). Regularizing this MMD term prohibits ⌥
from having any information about treatment A, thus making
⌥(X) a good representation of the adjustment variables.

To achieve a high CATE estimation performance, how to
compute the weight value (i.e., wi in (3)) is essential. In the
DRCFR method [Hassanpour and Greiner, 2020], weight
is formulated using importance sampling, which employs
a density-ratio-based weight to construct a weighted esti-
mator of expected value. To estimate the expected outcome
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variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.

To learn the representations of such features, DRCFR mini-
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information of adjustment variables, represented by ⌥(X),
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variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.

To learn the representations of such features, DRCFR mini-
mizes the weighted loss by computing the weights based on
the inverse of propensity scores, given by ⇡(�(X),�(X)).

A strong advantage of DRCFR is that it can avoid losing the
information of adjustment variables, represented by ⌥(X),
which is useful for outcome prediction. However, since
the inverse of conditional probability, ⇡(�(X),�(X)), often
yields extreme values, under finite sample settings, even a
slight estimation error of ⇡ leads to a large weight estimation
error. This numerical instability of weight estimation makes
it di�cult to achieve high CATE estimation performance.

3 PROPOSED METHOD

To improve the estimation stability of weighted representa-
tion learning, we propose a di↵erentiable weight correction
framework that can be used in an end-to-end fashion.

3.1 OVERVIEW

To estimate the CATE in (1), following DRCFR [Hassan-
pour and Greiner, 2020], we perform weighted representa-
tion learning. We learn three model components: the feature
representations (i.e., �(X), �(X), and ⌥(X) in Figure 1),
propensity score model ⇡(�(X),�(X)), and outcome predic-
tion models h

0(�(X),⌥(X)) and h
1(�(X),⌥(X)), where h
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and h
1 are used to predict potential outcomes Y

0 and Y
1.

DRCFR jointly optimizes these three model components
by minimizing the weighted loss. However, we empirically
observed that such a joint optimization is di�cult. A pos-
sible reason is that the loss function dramatically changes
with the IPW weights and hence substantially varies with
the parameter values of propensity score ⇡. For this reason,
we separately learn ⇡ and perform an alternate optimization
that repeatedly takes the following two steps.

First, we learn propensity score ⇡ (while the fixing other
model parameters) by minimizing the cross entropy loss:
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P̂(⌥(X) | A = 1). Regularizing this MMD term prohibits ⌥
from having any information about treatment A, thus making
⌥(X) a good representation of the adjustment variables.

To achieve a high CATE estimation performance, how to
compute the weight value (i.e., wi in (3)) is essential. In the
DRCFR method [Hassanpour and Greiner, 2020], weight
is formulated using importance sampling, which employs
a density-ratio-based weight to construct a weighted esti-
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variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.

To learn the representations of such features, DRCFR mini-
mizes the weighted loss by computing the weights based on
the inverse of propensity scores, given by ⇡(�(X),�(X)).

A strong advantage of DRCFR is that it can avoid losing the
information of adjustment variables, represented by ⌥(X),
which is useful for outcome prediction. However, since
the inverse of conditional probability, ⇡(�(X),�(X)), often
yields extreme values, under finite sample settings, even a
slight estimation error of ⇡ leads to a large weight estimation
error. This numerical instability of weight estimation makes
it di�cult to achieve high CATE estimation performance.

3 PROPOSED METHOD

To improve the estimation stability of weighted representa-
tion learning, we propose a di↵erentiable weight correction
framework that can be used in an end-to-end fashion.

3.1 OVERVIEW

To estimate the CATE in (1), following DRCFR [Hassan-
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DRCFR jointly optimizes these three model components
by minimizing the weighted loss. However, we empirically
observed that such a joint optimization is di�cult. A pos-
sible reason is that the loss function dramatically changes
with the IPW weights and hence substantially varies with
the parameter values of propensity score ⇡. For this reason,
we separately learn ⇡ and perform an alternate optimization
that repeatedly takes the following two steps.

First, we learn propensity score ⇡ (while the fixing other
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ton et al., 2012], which measures the discrepancy between
empirical conditional distributions P̂(⌥(X) | A = 0) and
P̂(⌥(X) | A = 1). Regularizing this MMD term prohibits ⌥
from having any information about treatment A, thus making
⌥(X) a good representation of the adjustment variables.

To achieve a high CATE estimation performance, how to
compute the weight value (i.e., wi in (3)) is essential. In the
DRCFR method [Hassanpour and Greiner, 2020], weight
is formulated using importance sampling, which employs
a density-ratio-based weight to construct a weighted esti-
mator of expected value. To estimate the expected outcome
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variable, confounder, and adjustment variable might be in-
come, age, and smoking habits, respectively.

To learn the representations of such features, DRCFR mini-
mizes the weighted loss by computing the weights based on
the inverse of propensity scores, given by ⇡(�(X),�(X)).

A strong advantage of DRCFR is that it can avoid losing the
information of adjustment variables, represented by ⌥(X),
which is useful for outcome prediction. However, since
the inverse of conditional probability, ⇡(�(X),�(X)), often
yields extreme values, under finite sample settings, even a
slight estimation error of ⇡ leads to a large weight estimation
error. This numerical instability of weight estimation makes
it di�cult to achieve high CATE estimation performance.

3 PROPOSED METHOD

To improve the estimation stability of weighted representa-
tion learning, we propose a di↵erentiable weight correction
framework that can be used in an end-to-end fashion.

3.1 OVERVIEW

To estimate the CATE in (1), following DRCFR [Hassan-
pour and Greiner, 2020], we perform weighted representa-
tion learning. We learn three model components: the feature
representations (i.e., �(X), �(X), and ⌥(X) in Figure 1),
propensity score model ⇡(�(X),�(X)), and outcome predic-
tion models h

0(�(X),⌥(X)) and h
1(�(X),⌥(X)), where h

0

and h
1 are used to predict potential outcomes Y

0 and Y
1.

DRCFR jointly optimizes these three model components
by minimizing the weighted loss. However, we empirically
observed that such a joint optimization is di�cult. A pos-
sible reason is that the loss function dramatically changes
with the IPW weights and hence substantially varies with
the parameter values of propensity score ⇡. For this reason,
we separately learn ⇡ and perform an alternate optimization
that repeatedly takes the following two steps.

First, we learn propensity score ⇡ (while the fixing other
model parameters) by minimizing the cross entropy loss:

min
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where ⌦(·) is a regularizer that penalizes the model com-
plexity, and �⇡ > 0 is a regularization parameter.
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where wi is the weight that is given by propensity score
⇡(�(xi),�(xi)), l is the prediction loss for outcome yi, �⌥ > 0
and ��⇡ > 0 are regularization parameters,1 and MMD de-
notes the kernel maximum mean discrepancy (MMD) [Gret-
ton et al., 2012], which measures the discrepancy between
empirical conditional distributions P̂(⌥(X) | A = 0) and
P̂(⌥(X) | A = 1). Regularizing this MMD term prohibits ⌥
from having any information about treatment A, thus making
⌥(X) a good representation of the adjustment variables.

To achieve a high CATE estimation performance, how to
compute the weight value (i.e., wi in (3)) is essential. In the
DRCFR method [Hassanpour and Greiner, 2020], weight
is formulated using importance sampling, which employs
a density-ratio-based weight to construct a weighted esti-
mator of expected value. To estimate the expected outcome
prediction losses over the observed individuals (A = ai) and
the unobserved individuals (A = 1� ai), DRCFR formulates
the weight as the sum of two density ratios:
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(�(xi),�(xi)). Since such an IPW weight often takes an
extreme value, the weight estimation is numerically unsta-
ble, leading to inaccurate CATE estimation. This issue is
serious in a high-dimensional setup due to the di�culty of
correctly estimating propensity scores [Assaad et al., 2021].
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To resolve this issue, we improve the weight stability by
replacing an extreme value of wi in Eq. (4) with a weight
stabilization technique, called Pareto smoothing.

3.2 WEIGHT CORRECTION VIA PARETO
SMOOTHING

Pareto smoothing [Vehtari et al., 2024] is a technique for
improving the weight stability of importance sampling.

According to Vehtari et al. [2024], this technique has two ad-
vantages. First, it can yield a less biased estimator, compared
with weight truncation, which replaces extreme weights
naively with constants [Crump et al., 2009, Ionides, 2008]:
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where L > 0 and U > 0 are the truncation thresholds. Sec-
ond, it can be combined with self-normalization, which
prevents the weights from being too small or too large rel-
ative to each other by dividing each weight value by its
empirical mean under identical treatment assignment:
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Here I(a j = ai) is an indicator function that takes 1 if a j = ai;
otherwise, 0. We experimentally confirmed that performing
self-normalization over Pareto-smoothed weights leads to
better CATE estimation performance (Section 4.1).

To construct a weighted estimator that is numerically robust
to weight estimation error, Pareto smoothing replaces the
extremely large weight values with GPD quantiles in two
steps: GPD parameter estimation and weight replacement.

3.2.1 GPD Parameter Fitting

First, we fit the GPD parameters to large IPW weight values.

Suppose that random variable W follows the GPD. Then its
GPD cumulative distribution function is defined as
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where µ 2 R, � > 0, and ⇠ 2 R are location, scale, and
shape parameters.

We fit these GPD parameters to the M + 1 largest IPW
weight values. Here M (0 < M < n) is given by heuristics;
following Vehtari et al. [2024], we determine it by

M = min
⇢�

n

5

⌫
, b3
p

nc

�
, (8)

where bnc denotes a floor function, which returns the greatest
integer that is less than or equal to n. Letting w[1]  · · · 

w[n] be the weights sorted in ascending order, the M + 1
largest ones are denoted by w[n�M], . . . ,w[n].

Following Vehtari et al. [2024], we set location parameter µ
to the (M + 1)-th largest IPW weight value, i.e.,

µ̂ = w[n�M]. (9)

By contrast, we estimate � and ⇠ using w[n�M+1], . . . ,w[n].
Among several estimators, we employ the standard method
termed the probability weighted moment (PWM) [Hosking
and Wallis, 1987], 2 which constructs the estimators of �
and ⇠ using the following weighted moment statistic:
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Roughly speaking, statistic ↵s in (10) is a weighted average
of W � µ with weight (1 � F(W))s and is estimated as
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Using ↵̂0 and ↵̂1, the PWM method estimates � and ⇠ as
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3.2.2 Weight Replacement with GPD Quantiles

Second, we replace the M largest weight values, i.e.,
w[n�M+1], . . . ,w[n], with the quantiles of the fitted GPD with
parameters (µ̂, �̂, ⇠̂) in (9), (13), and (14).

Since the quantile function is given by the inverse of the
cumulative distribution function, we replace weight value
w[n�M+m] (m = 1, . . . ,M) with m�1/2

M
-quantile as

w[n�M+m] = F̂�1
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where F̂ denotes a fitted GPD cumulative distribution func-
tion. By contrast, we do not change the other weight values,
i.e., w[1], . . . ,w[n�M]. Hence, letting i = n � M + m, we can
summarize the weight replacement procedure as

w[i] = I(i � n � M + 1) F̂�1
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+ (1 � I(i � n � M + 1)) w[i]. (16)
2Although we empirically observed that using PWM leads

to good CATE estimation performance, GPD parameter fitting
might not be easy in general. However, according to Vehtari et al.
[2024, Section 6], one can evaluate the reliability of GPD fitting
by employing the estimated value of GPD’s shape parameter, ⇠̂,
which determines the heaviness of the distribution tail.
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+ (1 � I(i � n � M + 1)) w[i]. (16)
2Although we empirically observed that using PWM leads

to good CATE estimation performance, GPD parameter fitting
might not be easy in general. However, according to Vehtari et al.
[2024, Section 6], one can evaluate the reliability of GPD fitting
by employing the estimated value of GPD’s shape parameter, ⇠̂,
which determines the heaviness of the distribution tail.
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To resolve this issue, we improve the weight stability by
replacing an extreme value of wi in Eq. (4) with a weight
stabilization technique, called Pareto smoothing.

3.2 WEIGHT CORRECTION VIA PARETO
SMOOTHING

Pareto smoothing [Vehtari et al., 2024] is a technique for
improving the weight stability of importance sampling.

According to Vehtari et al. [2024], this technique has two ad-
vantages. First, it can yield a less biased estimator, compared
with weight truncation, which replaces extreme weights
naively with constants [Crump et al., 2009, Ionides, 2008]:

w
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>>>:

L if wi < L

wi if L  wi < U

U if U  wi

, (5)

where L > 0 and U > 0 are the truncation thresholds. Sec-
ond, it can be combined with self-normalization, which
prevents the weights from being too small or too large rel-
ative to each other by dividing each weight value by its
empirical mean under identical treatment assignment:

w
Norm.
i

B
wi

wA=ai

, where wA=ai =

P
n

j=1 I(a j = ai)wj

P
n

j=1 I(a j = ai)
. (6)

Here I(a j = ai) is an indicator function that takes 1 if a j = ai;
otherwise, 0. We experimentally confirmed that performing
self-normalization over Pareto-smoothed weights leads to
better CATE estimation performance (Section 4.1).

To construct a weighted estimator that is numerically robust
to weight estimation error, Pareto smoothing replaces the
extremely large weight values with GPD quantiles in two
steps: GPD parameter estimation and weight replacement.

3.2.1 GPD Parameter Fitting

First, we fit the GPD parameters to large IPW weight values.

Suppose that random variable W follows the GPD. Then its
GPD cumulative distribution function is defined as

F(w) =

8>><
>>:

1 �
⇣
1 + ⇠(w�µ)�

⌘� 1
⇠ (⇠ , 0),

1 � e�
w�µ
� (⇠ = 0)

(7)

where µ 2 R, � > 0, and ⇠ 2 R are location, scale, and
shape parameters.

We fit these GPD parameters to the M + 1 largest IPW
weight values. Here M (0 < M < n) is given by heuristics;
following Vehtari et al. [2024], we determine it by

M = min
⇢�

n
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where bnc denotes a floor function, which returns the greatest
integer that is less than or equal to n. Letting w[1]  · · · 

w[n] be the weights sorted in ascending order, the M + 1
largest ones are denoted by w[n�M], . . . ,w[n].

Following Vehtari et al. [2024], we set location parameter µ
to the (M + 1)-th largest IPW weight value, i.e.,

µ̂ = w[n�M]. (9)

By contrast, we estimate � and ⇠ using w[n�M+1], . . . ,w[n].
Among several estimators, we employ the standard method
termed the probability weighted moment (PWM) [Hosking
and Wallis, 1987], 2 which constructs the estimators of �
and ⇠ using the following weighted moment statistic:

↵s = E
⇥
(1 � F(W))s(W � µ)

⇤
s 2

�
0, 1

 
. (10)

Roughly speaking, statistic ↵s in (10) is a weighted average
of W � µ with weight (1 � F(W))s and is estimated as

↵̂0 =
1
M

nX

i=n�M+1

�
w[i] � µ̂

�
, (11)

↵̂1 =
1
M

nX

i=n�M+1

(n � i)
�
w[i] � µ̂

�
. (12)

Using ↵̂0 and ↵̂1, the PWM method estimates � and ⇠ as

�̂ =
2↵̂0↵̂1

↵̂0 � 2↵̂1
, (13)

⇠̂ = 2 �
↵̂0

↵̂0 � 2↵̂1
. (14)

3.2.2 Weight Replacement with GPD Quantiles

Second, we replace the M largest weight values, i.e.,
w[n�M+1], . . . ,w[n], with the quantiles of the fitted GPD with
parameters (µ̂, �̂, ⇠̂) in (9), (13), and (14).

Since the quantile function is given by the inverse of the
cumulative distribution function, we replace weight value
w[n�M+m] (m = 1, . . . ,M) with m�1/2

M
-quantile as

w[n�M+m] = F̂�1
 

m � 1/2
M

!
, (15)

where F̂ denotes a fitted GPD cumulative distribution func-
tion. By contrast, we do not change the other weight values,
i.e., w[1], . . . ,w[n�M]. Hence, letting i = n � M + m, we can
summarize the weight replacement procedure as

w[i] = I(i � n � M + 1) F̂�1
 

i � (n � M) � 1/2
M

!

+ (1 � I(i � n � M + 1)) w[i]. (16)
2Although we empirically observed that using PWM leads

to good CATE estimation performance, GPD parameter fitting
might not be easy in general. However, according to Vehtari et al.
[2024, Section 6], one can evaluate the reliability of GPD fitting
by employing the estimated value of GPD’s shape parameter, ⇠̂,
which determines the heaviness of the distribution tail.
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Figure 2: Illustration of rank function r = r(w) (black) and
di↵erentiable rank functions r = r"(w) (orange and green):
Here we take input vector w = [w1, 1, 2, 3]>, vary w1’s value
and look at how its rank r1 2 r changes. When regularization
parameter "! 0, r" converges to r [Blondel et al., 2020].

In this paper, we utilize the weight replacement formula in
(16) to improve the estimation stability of weighted repre-
sentation learning. Unfortunately, we cannot directly em-
ploy this formula in an end-to-end manner because it needs
non-di↵erentiable computations.

3.3 NON-DIFFERENTIABLE PROCEDURES

The main di�culty of using Pareto smoothing for weighted
representation learning is that it requires the computation of
the rank of each IPW weight.

Ranking is an operation that takes input vector w =
[w1, . . . ,wn]> and outputs the position of each element wi

in sorted vector [w[1], . . . ,w[n]]>, where w[1]  · · ·  w[n].
To illustrate this operation, consider a case with n = 3. For
instance, if w satisfies w3  w1  w2, since w1 = w[2],
w2 = w[3], and w3 = w[1] hold, the rank of w is given as
vector r = [2, 3, 1]>. Formally, such an operation can be ex-
pressed as r = r(w), using function r, called a rank function
(See Appendix A for the definition of function r).

Unfortunately, this rank function is not di↵erentiable with
respect to input w. To see this, consider w = [w1, 1, 2, 3]>
and observe how the rank of w1 varies when we increase
its value. In this case, its rank, r1, is given as a piecewise
constant function, as illustrated as the black line in Figure 2.
Since the derivative of such a piecewise constant function
is always zero or undefined, we cannot perform gradient
backpropagation and hence cannot employ the weight cor-
rection technique in (16) in an end-to-end manner. There-
fore, with such a non-di↵erentiable rank function, we cannot
use Pareto smoothing for weighted representation learning,
which jointly learns the propensity score model, the feature
representations, and the outcome prediction models.

One may consider a separate learning approach that trains
the propensity score model, computes the Pareto-smoothed

IPW weights by (16), and learns the feature representations.
This approach, however, requires directly fitting a propen-
sity score model to features X, not their representations.
Since accurately estimating a propensity score model from
high-dimensional features X is considerably di�cult, such
a separate learning approach yields large model misspecifi-
cation error and hence leads to CATE estimation bias. We
experimentally show its poor performance in Section 4.1.

For this reason, we develop a joint learning approach by
making the non-di↵erentiable computation in Pareto smooth-
ing di↵erentiable.

3.4 MAKING PARETO SMOOTHING
DIFFERENTIABLE

3.4.1 Di↵erentiable Approximation

The weight replacement formula in (16) requires the compu-
tation of two troublesome piecewise constant functions. One
is rank function r, which is needed to obtain the position of
weight wi in sorted vector [w[1], . . . ,w[n]]>, and the other is
indicator function I(i � n � M + 1).

To make rank function r di↵erentiable, we utilize the dif-
ferentiable ranking technique [Cuturi et al., 2019, Blondel
et al., 2020], which approximates rank function r(w) with
a di↵erentiable function. Among the recent methods, we
select a computationally e�cient one [Blondel et al., 2020],
which works with O(nlogn) time and O(n) memory com-
plexity. With this method, we approximate rank function
r(w) as the solution to the regularized linear programming
(LP) that contains the l

2 regularization term with regular-
ization parameter " > 0. The solution, r"(w), is a piecewise
linear function that can well approximate rank function r

(as illustrated in Figure 2) and is di↵erentiable almost every-
where, thus greatly facilitating gradient backpropagation.

As a di↵erentiable approximation of indicator function I in
(16), we employ sigmoid function &:

I(i � j) ' &(i, j) B
1

1 + e�(i� j) , (17)

where  > 0 is a hyperparameter.

3.4.2 Reformulation of GPD Parameter Estimators

To employ di↵erentiable rank r = r"(w) for Pareto smooth-
ing, since it represents ranks as continuous values, we need
to modify the GPD parameter estimators, i.e., µ̂, �̂, and ⇠̂.

Regarding location parameter µ̂ in (9), since this esti-
mator is given as w[n�M], i.e., the largest weight among
w[1], . . . ,w[n�M], we reformulate it as

µ̃ = wi, where i = arg max
i

�
ri | ri  n � M

 
.
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To resolve this issue, we improve the weight stability by
replacing an extreme value of wi in Eq. (4) with a weight
stabilization technique, called Pareto smoothing.

3.2 WEIGHT CORRECTION VIA PARETO
SMOOTHING

Pareto smoothing [Vehtari et al., 2024] is a technique for
improving the weight stability of importance sampling.

According to Vehtari et al. [2024], this technique has two ad-
vantages. First, it can yield a less biased estimator, compared
with weight truncation, which replaces extreme weights
naively with constants [Crump et al., 2009, Ionides, 2008]:

w
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L if wi < L

wi if L  wi < U

U if U  wi

, (5)

where L > 0 and U > 0 are the truncation thresholds. Sec-
ond, it can be combined with self-normalization, which
prevents the weights from being too small or too large rel-
ative to each other by dividing each weight value by its
empirical mean under identical treatment assignment:

w
Norm.
i

B
wi

wA=ai

, where wA=ai =

P
n

j=1 I(a j = ai)wj

P
n

j=1 I(a j = ai)
. (6)

Here I(a j = ai) is an indicator function that takes 1 if a j = ai;
otherwise, 0. We experimentally confirmed that performing
self-normalization over Pareto-smoothed weights leads to
better CATE estimation performance (Section 4.1).

To construct a weighted estimator that is numerically robust
to weight estimation error, Pareto smoothing replaces the
extremely large weight values with GPD quantiles in two
steps: GPD parameter estimation and weight replacement.

3.2.1 GPD Parameter Fitting

First, we fit the GPD parameters to large IPW weight values.

Suppose that random variable W follows the GPD. Then its
GPD cumulative distribution function is defined as

F(w) =

8>><
>>:

1 �
⇣
1 + ⇠(w�µ)�

⌘� 1
⇠ (⇠ , 0),

1 � e�
w�µ
� (⇠ = 0)

(7)

where µ 2 R, � > 0, and ⇠ 2 R are location, scale, and
shape parameters.

We fit these GPD parameters to the M + 1 largest IPW
weight values. Here M (0 < M < n) is given by heuristics;
following Vehtari et al. [2024], we determine it by

M = min
⇢�

n
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nc

�
, (8)

where bnc denotes a floor function, which returns the greatest
integer that is less than or equal to n. Letting w[1]  · · · 

w[n] be the weights sorted in ascending order, the M + 1
largest ones are denoted by w[n�M], . . . ,w[n].

Following Vehtari et al. [2024], we set location parameter µ
to the (M + 1)-th largest IPW weight value, i.e.,

µ̂ = w[n�M]. (9)

By contrast, we estimate � and ⇠ using w[n�M+1], . . . ,w[n].
Among several estimators, we employ the standard method
termed the probability weighted moment (PWM) [Hosking
and Wallis, 1987], 2 which constructs the estimators of �
and ⇠ using the following weighted moment statistic:

↵s = E
⇥
(1 � F(W))s(W � µ)

⇤
s 2

�
0, 1

 
. (10)

Roughly speaking, statistic ↵s in (10) is a weighted average
of W � µ with weight (1 � F(W))s and is estimated as

↵̂0 =
1
M

nX

i=n�M+1

�
w[i] � µ̂

�
, (11)

↵̂1 =
1
M

nX

i=n�M+1

(n � i)
�
w[i] � µ̂

�
. (12)

Using ↵̂0 and ↵̂1, the PWM method estimates � and ⇠ as

�̂ =
2↵̂0↵̂1

↵̂0 � 2↵̂1
, (13)

⇠̂ = 2 �
↵̂0

↵̂0 � 2↵̂1
. (14)

3.2.2 Weight Replacement with GPD Quantiles

Second, we replace the M largest weight values, i.e.,
w[n�M+1], . . . ,w[n], with the quantiles of the fitted GPD with
parameters (µ̂, �̂, ⇠̂) in (9), (13), and (14).

Since the quantile function is given by the inverse of the
cumulative distribution function, we replace weight value
w[n�M+m] (m = 1, . . . ,M) with m�1/2

M
-quantile as

w[n�M+m] = F̂�1
 

m � 1/2
M

!
, (15)

where F̂ denotes a fitted GPD cumulative distribution func-
tion. By contrast, we do not change the other weight values,
i.e., w[1], . . . ,w[n�M]. Hence, letting i = n � M + m, we can
summarize the weight replacement procedure as

w[i] = I(i � n � M + 1) F̂�1
 

i � (n � M) � 1/2
M

!

+ (1 � I(i � n � M + 1)) w[i]. (16)
2Although we empirically observed that using PWM leads

to good CATE estimation performance, GPD parameter fitting
might not be easy in general. However, according to Vehtari et al.
[2024, Section 6], one can evaluate the reliability of GPD fitting
by employing the estimated value of GPD’s shape parameter, ⇠̂,
which determines the heaviness of the distribution tail.
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Figure 2: Illustration of rank function r = r(w) (black) and
di↵erentiable rank functions r = r"(w) (orange and green).
Here we take input vector w = [w1, 1, 2, 3]>, vary w1’s value,
and look at how its rank r1 2 r changes. When regularization
parameter "! 0, r" converges to r [Blondel et al., 2020].

Since the derivative of such a piecewise constant function
is always zero or undefined, we cannot perform gradient
backpropagation and hence cannot employ the weight cor-
rection technique in (16) in an end-to-end manner. There-
fore, with such a non-di↵erentiable rank function, we cannot
use Pareto smoothing for weighted representation learning,
which jointly learns the propensity score model, the feature
representations, and the outcome prediction models.

One may consider a separate learning approach that trains
the propensity score model, computes the Pareto-smoothed
IPW weights by (16), and then learns the feature representa-
tions. This approach, however, requires to fit a propensity
score model directly to features X, not their representation.
Since accurately estimating a propensity score model from
high-dimensional features X is considerably di�cult, due to
the model misspecification error, such a separate learning
approach will lead to CATE estimation bias. We experimen-
tally show its poor performance in Section 4.1.

For this reason, we develop a joint learning approach by
making the non-di↵erentiable computation in Pareto smooth-
ing di↵erentiable.

3.4 MAKING PARETO SMOOTHING
DIFFERENTIABLE

3.4.1 Di↵erentiable Approximation

The weight replacement formula in (16) requires the compu-
tation of the two troublesome piecewise constant functions.
One is rank function r, which is needed to obtain the posi-
tion of weight wi in the sorted vector [w[1], . . . ,w[n]]>, and
the other is indicator function I(i � n � M + 1).

To make rank function r di↵erentiable, we utilize the dif-
ferentiable ranking technique [Cuturi et al., 2019, Blondel
et al., 2020], which approximates rank function r(w) with

a di↵erentiable function. Among the recent methods, we
select a computationally e�cient one [Blondel et al., 2020],
which works with O(nlogn) time and O(n) memory com-
plexity. With this method, we approximate rank function
r(w) as the solution to the regularized linear programming
(LP) that contains the l

2 regularization term with regular-
ization parameter " > 0. The solution, r"(w), is a piecewise
linear function that can well approximate rank function r

(as illustrated in Figure 2) and is di↵erentiable almost every-
where, thus greatly facilitating gradient backpropagation.

Regarding indicator function I in (16), we approximate it as
the sigmoid function &:

I(i � j) ' &(i, j) B
1

1 + e�(i� j) , (17)

where  > 0 is a hyperparameter.

3.4.2 Reformulation of GPD Parameter Estimators

To employ di↵erentiable rank r = r"(w) for Pareto smooth-
ing, since it takes continuous values, we need to modify the
GPD parameter estimators, i.e., µ̂, �̂, and ⇠̂.

As regards location parameter µ̂ in (9), since this esti-
mator is given as w[n�M], i.e., the largest weight among
w[1], . . . ,w[n�M], we reformulate it as

µ̃ = wi, where i = arg max
i

�
ri | ri  n � M

 
.

To reformulate �̂ and ⇠̂ in (13) and (14), we rephrase estima-
tors ↵̂0 and ↵̂1 in (11) and (12). With non-di↵erentiable rank
r = r(w), these estimators are equivalently reformulated by
rewriting the summation over w[n�M+1], . . . ,w[n] in (11) and
(12) with indicator function I as

↵̂0 =
1
M

nX

i=1

I(ri � n � M + 1) (wi � µ̂)

↵̂1 =
1
M

nX

i=1

I(ri � n � M + 1) (n � ri) (wi � µ̂) .

Hence, when given di↵erentiable rank r = r"(w), by replac-
ing indicator function I with sigmoid function & in (17), we
make ↵̂0 and ↵̂1 di↵erentiable with respect to r:

↵̃0 =
1
M̃

nX

i=1

&(ri, n � M + 1) (wi � µ̃) , (18)

↵̃1 =
1
M̃

nX

i=1

&(ri, n � M + 1) (n � ri) (wi � µ̃) , (19)

where M̃ =
P

n

i=1 &(ri, n � M + 1). By substituting ↵̃0 and ↵̃1
for ↵̂0 and ↵̂1 in (13) and (14), we compute scale and shape
parameters as �̃ and ⇠̃, respectively.
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Figure 2: Illustration of rank function r = r(w) (black) and
di↵erentiable rank functions r = r"(w) (orange and green):
Here we take input vector w = [w1, 1, 2, 3]>, vary w1’s value
and look at how its rank r1 2 r changes. When regularization
parameter "! 0, r" converges to r [Blondel et al., 2020].

In this paper, we utilize the weight replacement formula in
(16) to improve the estimation stability of weighted repre-
sentation learning. Unfortunately, we cannot directly em-
ploy this formula in an end-to-end manner because it needs
non-di↵erentiable computations.

3.3 NON-DIFFERENTIABLE PROCEDURES

The main di�culty of using Pareto smoothing for weighted
representation learning is that it requires the computation of
the rank of each IPW weight.

Ranking is an operation that takes input vector w =
[w1, . . . ,wn]> and outputs the position of each element wi

in sorted vector [w[1], . . . ,w[n]]>, where w[1]  · · ·  w[n].
To illustrate this operation, consider a case with n = 3. For
instance, if w satisfies w3  w1  w2, since w1 = w[2],
w2 = w[3], and w3 = w[1] hold, the rank of w is given as
vector r = [2, 3, 1]>. Formally, such an operation can be ex-
pressed as r = r(w), using function r, called a rank function
(See Appendix A for the definition of function r).

Unfortunately, this rank function is not di↵erentiable with
respect to input w. To see this, consider w = [w1, 1, 2, 3]>
and observe how the rank of w1 varies when we increase
its value. In this case, its rank, r1, is given as a piecewise
constant function, as illustrated as the black line in Figure 2.
Since the derivative of such a piecewise constant function
is always zero or undefined, we cannot perform gradient
backpropagation and hence cannot employ the weight cor-
rection technique in (16) in an end-to-end manner. There-
fore, with such a non-di↵erentiable rank function, we cannot
use Pareto smoothing for weighted representation learning,
which jointly learns the propensity score model, the feature
representations, and the outcome prediction models.

One may consider a separate learning approach that trains
the propensity score model, computes the Pareto-smoothed

IPW weights by (16), and learns the feature representations.
This approach, however, requires directly fitting a propen-
sity score model to features X, not their representations.
Since accurately estimating a propensity score model from
high-dimensional features X is considerably di�cult, such
a separate learning approach yields large model misspecifi-
cation error and hence leads to CATE estimation bias. We
experimentally show its poor performance in Section 4.1.

For this reason, we develop a joint learning approach by
making the non-di↵erentiable computation in Pareto smooth-
ing di↵erentiable.

3.4 MAKING PARETO SMOOTHING
DIFFERENTIABLE

3.4.1 Di↵erentiable Approximation

The weight replacement formula in (16) requires the compu-
tation of two troublesome piecewise constant functions. One
is rank function r, which is needed to obtain the position of
weight wi in sorted vector [w[1], . . . ,w[n]]>, and the other is
indicator function I(i � n � M + 1).

To make rank function r di↵erentiable, we utilize the dif-
ferentiable ranking technique [Cuturi et al., 2019, Blondel
et al., 2020], which approximates rank function r(w) with
a di↵erentiable function. Among the recent methods, we
select a computationally e�cient one [Blondel et al., 2020],
which works with O(nlogn) time and O(n) memory com-
plexity. With this method, we approximate rank function
r(w) as the solution to the regularized linear programming
(LP) that contains the l

2 regularization term with regular-
ization parameter " > 0. The solution, r"(w), is a piecewise
linear function that can well approximate rank function r

(as illustrated in Figure 2) and is di↵erentiable almost every-
where, thus greatly facilitating gradient backpropagation.

As a di↵erentiable approximation of indicator function I in
(16), we employ sigmoid function &:

I(i � j) ' &(i, j) B
1

1 + e�(i� j) , (17)

where  > 0 is a hyperparameter.

3.4.2 Reformulation of GPD Parameter Estimators

To employ di↵erentiable rank r = r"(w) for Pareto smooth-
ing, since it represents ranks as continuous values, we need
to modify the GPD parameter estimators, i.e., µ̂, �̂, and ⇠̂.

Regarding location parameter µ̂ in (9), since this esti-
mator is given as w[n�M], i.e., the largest weight among
w[1], . . . ,w[n�M], we reformulate it as

µ̃ = wi, where i = arg max
i

�
ri | ri  n � M

 
.

5

Combining 1. & 2. leads to the following weight 
replacement formula:

To reformulate �̂ and ⇠̂ in (13) and (14), we rephrase estima-
tors ↵̂0 and ↵̂1 in (11) and (12). With non-di↵erentiable rank
r = r(w), these estimators are equivalently reformulated by
rewriting the summation over w[n�M+1], . . . ,w[n] in (11) and
(12) with indicator function I as

↵̂0 =
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M

nX
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I(ri � n � M + 1) (wi � µ̂)
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M

nX
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Hence, when given di↵erentiable rank r = r"(w), by replac-
ing indicator function I with sigmoid function & in (17), we
make ↵̂0 and ↵̂1 di↵erentiable with respect to r:

↵̃0 =
1
M̃

nX

i=1

&(ri, n � M + 1) (wi � µ̃) , (18)
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M̃

nX
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where M̃ =
P

n

i=1 &(ri, n � M + 1). By substituting ↵̃0 and ↵̃1
for ↵̂0 and ↵̂1 in (13) and (14), we compute scale and shape
parameters as �̃ and ⇠̃, respectively.

3.4.3 Overall Algorithm

Using the GPD cumulative distribution function, F̃, with
parameters (µ̃, �̃, ⇠̃), we replace each weight wi in (4) with

w̃i = &(ri, n � M + 1) F̃�1
 
⇣

 
ri � (n � M) � 1/2

M

!!

+ (1 � &(ri, n � M + 1)) wi, (20)

where ⇣(x) B min {max {x, 0} , 1} is a function that forces
input x to lie in [0, 1]. Using Pareto-smoothed weight w̃i

instead of wi, we minimize the objective function in (3).

Algorithm 1 summarizes our method. To alternately min-
imize the objective functions in (2) and (3), we perform
stochastic gradient descent [Kingma and Ba, 2015]. Af-
ter the convergence, we estimate the CATE in (1) by
h

1(�(x),⌥(x)) � h
0(�(x),⌥(x)).

Compared with the DRCFR method [Hassanpour and
Greiner, 2020], our method requires additional time to com-
pute Pareto-smoothed weights (lines 12-16 in Algorithm 1).
In particular, computing di↵erentiable rank (line 12) re-
quires time complexity O(BlogB) for mini-batch size B,
which is needed to evaluate the objective function in (3) and
its gradient for each iteration in the training phase.

Remark: Strictly speaking, the choice of activation func-
tions in propensity score ⇡ and feature representations � and
� is critical for satisfying the assumption of Pareto smooth-
ing that the distribution of the importance sampling weight

Algorithm 1 Di↵erentiable Pareto-Smoothed Weighting
(DPSW)

1: Initialize the parameters of �, �, ⌥, ⇡, h
0, and h

1

2: while not converged do
3: while not converged do
4: Sample mini-batch fromD = {(ai, xi, yi)}ni=1
5: Update ⇡ by minimizing cross entropy loss in (2)
6: end while
7: while not converged do
8: Sample mini-batch fromD = {(ai, xi, yi)}ni=1
9: for instance i in mini-batch do

10: Compute weight wi by (4)
11: end for
12: Compute di↵erentiable rank r = r"(w)
13: Estimate GPD parameters as µ̃, �̃, and ⇠̃
14: for instance i in mini-batch do
15: Replace each weight wi with w̃i in (20)
16: end for
17: Update �, �, ⌥, h

0, and h
1 by minimizing predic-

tion loss in (3) with Pareto-smoothed weights {w̃i}

18: end while
19: end while

is absolutely continuous, which is necessary to prove the
asymptotic consistency (Theorem 1 of Vehtari et al. [2024]).
This assumption holds if each activation is di↵erentiable
almost everywhere (i.e., di↵erentiable except on a set of
measure zero). However, for instance, using the rectified
linear unit (ReLU) in propensity score model ⇡ makes the
distribution of IPW weight discontinuous, thus violating the
assumption of Pareto smoothing. Even with almost every-
where di↵erentiable activation functions, due to the lack
of learning theory on neural network models, deriving the
asymptotic consistency of our CATE estimator is extremely
challenging and is left as our future work.

4 EXPERIMENTS

4.1 SEMI-SYNTHETIC DATA

First, we evaluated the CATE estimation performance using
semi-synthetic benchmark datasets, where the true CATE
values are available, unlike real-world data.

Data: We selected the two high-dimensional datasets: the
News and the Atlantic Causal Inference Conference (ACIC)
datasets [Johansson et al., 2016, Shimoni et al., 2018].

The News dataset is constructed from n = 5000 articles, ran-
domly sampled from the New York Times corpus in the UCI
repository. 3 The task is to infer the e↵ect of the viewing
device (desktop (A = 0) or mobile (A = 1)) on the readers’
experience Y . Features X are the count of d = 3477 words in

3https://archive.ics.uci.edu/dataset/164/bag+of+words
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where ⇣(x) B min {max {x, 0} , 1} is a function that forces
input x to lie in [0, 1]. Using Pareto-smoothed weight w̃i
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Algorithm 1 summarizes our method. To alternately min-
imize the objective functions in (2) and (3), we perform
stochastic gradient descent [Kingma and Ba, 2015]. Af-
ter the convergence, we estimate the CATE in (1) by
h

1(�(x),⌥(x)) � h
0(�(x),⌥(x)).

4 EXPERIMENTS

4.1 SEMI-SYNTHETIC DATA

First, we evaluated the CATE estimation performance using
semi-synthetic benchmark datasets, where the true CATE
values are available, unlike real-world data.

Data: We selected the two high-dimensional datasets: the
News and the Atlantic Causal Inference Conference (ACIC)
datasets [Johansson et al., 2016, Shimoni et al., 2018].

The News dataset is constructed from n = 5000 articles,
randomly sampled from the New York Times corpus in the

UCI repository. 2 The task is to infer the e↵ect of the view-
ing device (desktop (A = 0) or mobile (A = 1)) on the
readers’ experience Y . Features X are the count of d = 3477
words in each article. Treatment A and outcome Y are sim-
ulated using the latent topic variables obtained by fitting a
topic model on X. The ACIC dataset is derived from the
clinical measurements of d = 177 features in the Linked
Birth and Infant Death Data (LBIDD) [MacDorman and
Atkinson, 1998] and is developed for the data analysis com-
petition called ACIC2018. Here, we randomly picked up
n = 5000 observations and prepared 20 datasets. With both
semi-synthetic datasets, we randomly split each sample into
training, validation, and test data with a ratio of 60/20/20.

Baselines: To evaluate our method (DPSW) and its variant
that performs self-normalization (DPSW Norm.), we con-
sider 14 baselines. With DRCFR [Hassanpour and Greiner,
2020], we tested the three di↵erent weighting schemes, each
of which performs no weight modification (DRCFR), self-
normalization (DRCFR Norm.; Eq. (6)), and the weight
truncation with the threshold suggested by Crump et al.
[2009] (DRCFR Trunc.; Eq. (5)). We also tested a separate
learning approach (PSW; Section 3.3), which trains propen-
sity score ⇡ with {(ai, xi)}ni=1 beforehand and learns only
�(X) and ⌥(X) using the Pareto-smoothed IPW weights.
Other baselines include (i) linear regression methods: a sin-
gle model with treatment A added to its input (LR-1) and
two separate models for each treatment (LR-2); (ii) meta-
learner methods: the S-Learner (SL), the T-Learner (TL),
the X-Learner (XL), and the DR-Learner (DRL); (iii) tree-
based methods: the causal forest [Athey et al., 2019] (CF)
and the variant combined with double/debiased machine
learning [Chernozhukov et al., 2018] (CF DML); and (iv)
neural network methods: the treatment-agnostic regression
network [Shalit et al., 2017] (TARNet) and the generative
adversarial network [Yoon et al., 2018] (GANITE). We
detail the settings of these baselines in Appendix B.1.

Settings: Regarding our method and DRCFR, we used three-
layered feed-forward neural networks (FNNs) to formulate
feature representations �(X), �(X), and ⌥(X), propensity
score ⇡ and outcome prediction models h

0 and h
1.

We tuned the hyperparameters (e.g., parameter " of di↵eren-
tiable rank r"(w) in our method) by minimizing the objective
function value on validation data; such hyperparameter tun-
ing is standard for CATE estimation [Shalit et al., 2017].

Performance metric: Following Hill [2011], we used the
precision in the estimation of heterogeneous e↵ect (PEHE),

PEHE B
q

1
n

⇣
(y1

i
� y

0
i
) � ⌧̂i

⌘2
, where y

0
i

and y
1
i

are the true
potential outcomes, and ⌧̂i denotes the predicted CATE
value. We computed the mean and the standard deviation of
test PEHE over 50 realizations of potential outcomes (the
News dataset) and 20 realizations (the ACIC dataset).

2https://archive.ics.uci.edu/dataset/164/bag+of+words
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Table 1: Mean and standard deviation of test PEHE on semi-
synthetic datasets (Lower is better)

Method News (d = 3477) ACIC (d = 177)

LR-1 3.35 ± 1.28 0.72 ± 0.07
LR-2 5.36 ± 1.75 3.82 ± 0.15

SL 2.83 ± 1.11 1.69 ± 0.52
TL 2.55 ± 0.82 2.23 ± 0.50
XL 2.77 ± 1.01 1.05 ± 0.72
DRL 23.9 ± 5.96 3.77 ± 8.96

CF 3.84 ± 1.67 3.55 ± 0.19
CF DML 2.69 ± 1.06 1.18 ± 0.32

TARNet 4.92 ± 1.80 3.31 ± 0.51
GANITE 2.68 ± 0.66 3.69 ± 0.77

DRCFR 2.38 ± 0.66 0.98 ± 0.07
DRCFR Norm. 2.37 ± 0.94 0.73 ± 0.12
DRCFR Trunc. 2.42 ± 0.79 1.06 ± 0.06
PSW 4.03 ± 1.35 0.71 ± 0.01

DPSW 2.20 ± 0.72 0.57 ± 0.03
DPSW Norm. 2.10 ± 0.66 0.52 ± 0.16

Results: Table 1 presents the test PEHEs on the News and
ACIC datasets.

Our proposed framework (DPSW and DPSW Norm.) out-
performed all baselines, demonstrating their e↵ectiveness
in CATE estimation from high-dimensional data. DPSW
Norm. achieved lower PEHEs than DPSW, implying that
the self-normalization of Pareto-smoothed weights can fur-
ther improve the stability of the weight estimation.

Weighted representation learning methods (DR-CFR and
DPSW) performed better than other neural network methods
(TARNet and GANITE), especially on the ACIC dataset.
Given that treatment A and outcome Y of this dataset were
simulated using di↵erent features in X, these results em-
phasize the importance of performing data-driven feature
separation via weighted representation in such a setup.

PSW worked much worse on the News dataset than DPSW,
indicating that fitting a propensity score directly to high-
dimensional features X leads to a severe model misspecifi-
cation error, making the subsequent weighted representation
learning di�cult, even with the Pareto-smoothed weights.
By contrast, our joint learning approach well performed,
thanks to the use of di↵erentiable Pareto smoothing.

4.2 SYNTHETIC DATA

Next, we investigated how well our method can learn the
feature representations using synthetic data, where the data-
generating processes are entirely known.

Data: Following Hassanpour and Greiner [2020], we simu-
lated synthetic data. We randomly generated features X =
[X�,X�,X⌥]> 2 Rd (d = 15, 18, . . . , 30). Then, by regard-
ing feature subsets X� 2 Rd/3, X� 2 Rd/3, and X⌥ 2 Rd/3 as
instrumental variables, confounders, and adjustment vari-
ables, respectively, we sampled binary treatment A using
X� and X� and outcome Y by employing X� and X⌥ (See
Appendix B.2 for the detail). We split each of 20 datasets
(n = 20000) with a 50/25/25 training/validation/test ratio.

Performance metric: As with Hassanpour and Greiner
[2020], we evaluated the quality of the learned feature rep-
resentations �(X), �(X), and ⌥(X), each of which is formu-
lated as a three-layered FNN encoder:

FNN(X) B ⌫
⇣
W3⌫

⇣
W2⌫

⇣
W1X

⌘⌘⌘
,

where ⌫ is exponential linear units (ELUs) [Clevert et al.,
2016], and W1, W2, and W3 are the weight parameter matri-
ces in the first, the second, and the third layer, respectively.

To determine whether the learned FNN encoders correctly
look at important features, we measured the attribution of
features X�, X�, and X⌥ by employing W1, i.e., the trained
weight matrix in the first layer of each encoder. For instance,
we quantified X�’s attribution on �(X), by taking two steps.
First, we partitioned its learned weight parameter matrix
as W1 = [W1

�,W
1
��], where W1

� is the submatrix with the
first d/3 columns of W1 and W1

�� is the one with the other
columns. Then we measured how greatly features X� a↵ects
the learned representation �(X) by taking the relative dif-
ference between the average absolute values of the weight

parameter submatrices, i.e., |W
1
� |�|W1

�� |
|W1
�� |

. We evaluated other

learned representations, �(X) and ⌥(X), in the same way.

Results: Figure 3 shows the means and standard deviations
of learned parameter di↵erences and test PEHEs over 20
randomly generated synthetic datasets.

With our DPSW method and DRCFR, the absolute param-
eter values |W1

�|, |W1
�|, and |W1

�| were su�ciently larger
than |W1

��|, |W1
��|, and |W1

��|, respectively, showing that
both methods correctly learn �(X), �(X), and ⌥(X) that are
highly dependent on instrumental variables X�, confounders
X�, and adjustment variables X⌥, respectively. These results
made a clear contrast to TARNet, which learns a single
representation without performing feature separation.

The same is true for the CATE estimation performance (Fig-
ure 3 (d)). The test PEHE of TARNet was larger than DPSW
and DRCFR, demonstrating the importance of data-driven
feature separation via weighted representation learning. By
contrast, our method achieved the lowest PEHE, thus indicat-
ing that our weight correction framework can successfully
improve the CATE estimation performance of DRCFR.

Performance under high-dimensional setup: We con-
firmed that our method also worked well with d =
600, 1200, . . . , 3000 (See Appendix C the detail).
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Figure 3: Learned encoder parameter di↵erences and test PEHEs on synthetic data. (a): Value di↵erence of W1 in encoder
�(X); (b): Value di↵erence of W1 in encoder �(X); (c): Value di↵erence of W1 in encoder ⌥(X); (d) Test PEHEs. With
TARNet, since it learns single encoder, we computed all parameter value di↵erences with weight matrix in same encoder.

5 RELATED WORK

Data-driven feature separation for CATE estimation:
CATE estimation has gained increasing attention because
of its great importance for causal mechanism understanding
[Chikahara et al., 2022, Zhao et al., 2022] and for decision
support in various fields, such as precision medicine [Gao
et al., 2021] and online advertising [Sun et al., 2015]. There
has been a surge of interest in leveraging flexible machine
learning models, including tree-based models [Athey et al.,
2019, Hill, 2011], Gaussian processes [Alaa and van der
Schaar, 2018, Horii and Chikahara, 2023], and neural net-
works [Hassanpour and Greiner, 2019, Johansson et al.,
2016, Shalit et al., 2017]. However, most methods treat all
input features X as confounders. As pointed out by Wu et al.
[2022], the empirical performance of such methods varies a
lot with the presence of adjustment variables in X, which is
usual in practice, especially in high-dimensional settings.

This issue motivates us to develop data-driven feature separa-
tion methods for treatment e↵ect estimation. A pioneer work
is the data-driven variable decomposition (D2VD) [Kuang
et al., 2017, 2020], which minimizes the weighted prediction
loss plus the regularizer for feature separation. The recent
method addresses a more complicated setup, where features
X include post-treatment variables, which are a↵ected by
treatment A [Wang et al., 2023]. However, the estimation
target of these methods is ATE, not CATE.

By contrast, DRCFR deals with CATE estimation and is
founded on weighted representation learning, which is a
promising approach for addressing high-dimensional data.
This is why we adopted it as the inference engine of our
weight correction framework. Integrating the recent idea
of enforcing independence between feature representations
with mutual information [Cheng et al., 2022, Chu et al.,
2022, Liu et al., 2024] is left as our future work.

Weighting schemes for treatment e↵ect estimation: IPW
[Rosenbaum and Rubin, 1983] is a common weighting tech-
nique for treatment e↵ect estimation. However, the weighted
estimator based on IPW is often numerically unstable due
to the computation of the inverse of the propensity score.

One remedy for this issue is weight truncation [Crump et al.,
2009], which, however, causes the estimation bias, leading
to inaccurate treatment e↵ect estimation.

To improve the estimation performance, Zhu et al. [2020]
have employed Pareto smoothing [Vehtari et al., 2015]. Al-
though they empirically show that using this technique leads
to better performance than weight truncation, their method
is developed for the estimation of ATE, not CATE.

Applying Pareto smoothing in weighted representation learn-
ing for CATE estimation is di�cult because it prevents
gradient backpropagation due to the non-di↵erentiability.
This di�culty is disappointing, given that previous work
has theoretically shown that the weight correction schemes,
such as weight truncation, helps to extract predictive feature
representations for CATE estimation [Assaad et al., 2021].

To establish a Pareto-smoothed weighting framework for
CATE estimation from high-dimensional data, we have
shown that how di↵erentiable ranking technique [Blondel
et al., 2020] can be used to simultaneously learn the propen-
sity score model and the feature representations.

6 CONCLUSION

In this paper, we have established a di↵erentiable Pareto-
smoothed weighting framework for CATE estimation from
high-dimensional data. To construct a CATE estimator that
is numerically robust to propensity score estimation error,
we make the weight correction procedure in Pareto smooth-
ing di↵erentiable and incorporate it into the weighted rep-
resentation learning approach for CATE estimation. Ex-
perimental results show that our framework successfully
outperforms traditional weighting schemes, as well as the
existing CATE estimation methods.

Leveraging the versatility of weighting, our future work will
investigate how to extend our framework to estimate the ef-
fects of such complex treatment as high-dimensional binary
treatment [Zou et al., 2020], continuous-valued treatment
[Wang et al., 2022], time series treatment [Lim et al., 2018].
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Table 1: Mean and standard deviation of test PEHE on semi-
synthetic datasets (Lower is better)

Method News (d = 3477) ACIC (d = 177)

LR-1 3.35 ± 1.28 0.72 ± 0.07
LR-2 5.36 ± 1.75 3.82 ± 0.15

SL 2.83 ± 1.11 1.69 ± 0.52
TL 2.55 ± 0.82 2.23 ± 0.50
XL 2.77 ± 1.01 1.05 ± 0.72
DRL 23.9 ± 5.96 3.77 ± 8.96

CF 3.84 ± 1.67 3.55 ± 0.19
CF DML 2.69 ± 1.06 1.18 ± 0.32

TARNet 4.92 ± 1.80 3.31 ± 0.51
GANITE 2.68 ± 0.66 3.69 ± 0.77

DRCFR 2.38 ± 0.66 0.98 ± 0.07
DRCFR Norm. 2.37 ± 0.94 0.73 ± 0.12
DRCFR Trunc. 2.42 ± 0.79 1.06 ± 0.06
PSW 4.03 ± 1.35 0.71 ± 0.01

DPSW 2.20 ± 0.72 0.57 ± 0.03
DPSW Norm. 2.10 ± 0.66 0.52 ± 0.16

Results: Table 1 presents the test PEHEs on the News and
ACIC datasets.

Our proposed framework (DPSW and DPSW Norm.) out-
performed all baselines, demonstrating their e↵ectiveness
in CATE estimation from high-dimensional data. DPSW
Norm. achieved lower PEHEs than DPSW, implying that
the self-normalization of Pareto-smoothed weights can fur-
ther improve the stability of the weight estimation.

Weighted representation learning methods (DR-CFR and
DPSW) performed better than other neural network methods
(TARNet and GANITE), especially on the ACIC dataset.
Given that treatment A and outcome Y of this dataset were
simulated using di↵erent features in X, these results em-
phasize the importance of performing data-driven feature
separation via weighted representation in such a setup.

PSW worked much worse on the News dataset than DPSW,
indicating that fitting a propensity score directly to high-
dimensional features X leads to a severe model misspecifi-
cation error, making the subsequent weighted representation
learning di�cult, even with the Pareto-smoothed weights.
By contrast, our joint learning approach well performed,
thanks to the use of di↵erentiable Pareto smoothing.

4.2 SYNTHETIC DATA

Next, we investigated how well our method can learn the
feature representations using synthetic data, where the data-
generating processes are entirely known.

Data: Following Hassanpour and Greiner [2020], we simu-
lated synthetic data. We randomly generated features X =
[X�,X�,X⌥]> 2 Rd (d = 15, 18, . . . , 30). Then, by regard-
ing feature subsets X� 2 Rd/3, X� 2 Rd/3, and X⌥ 2 Rd/3 as
instrumental variables, confounders, and adjustment vari-
ables, respectively, we sampled binary treatment A using
X� and X� and outcome Y by employing X� and X⌥ (See
Appendix B.2 for the detail). We split each of 20 datasets
(n = 20000) with a 50/25/25 training/validation/test ratio.

Performance metric: As with Hassanpour and Greiner
[2020], we evaluated the quality of the learned feature rep-
resentations �(X), �(X), and ⌥(X), each of which is formu-
lated as a three-layered FNN encoder:

FNN(X) B ⌫
⇣
W3⌫

⇣
W2⌫

⇣
W1X

⌘⌘⌘
,

where ⌫ is exponential linear units (ELUs) [Clevert et al.,
2016], and W1, W2, and W3 are the weight parameter matri-
ces in the first, the second, and the third layer, respectively.

To determine whether the learned FNN encoders correctly
look at important features, we measured the attribution of
features X�, X�, and X⌥ by employing W1, i.e., the trained
weight matrix in the first layer of each encoder. For instance,
we quantified X�’s attribution on �(X), by taking two steps.
First, we partitioned its learned weight parameter matrix
as W1 = [W1

�,W
1
��], where W1

� is the submatrix with the
first d/3 columns of W1 and W1

�� is the one with the other
columns. Then we measured how greatly features X� a↵ects
the learned representation �(X) by taking the relative dif-
ference between the average absolute values of the weight

parameter submatrices, i.e., |W
1
� |�|W1

�� |
|W1
�� |

. We evaluated other

learned representations, �(X) and ⌥(X), in the same way.

Results: Figure 3 shows the means and standard deviations
of learned parameter di↵erences and test PEHEs over 20
randomly generated synthetic datasets.

With our DPSW method and DRCFR, the absolute param-
eter values |W1

�|, |W1
�|, and |W1

�| were su�ciently larger
than |W1

��|, |W1
��|, and |W1

��|, respectively, showing that
both methods correctly learn �(X), �(X), and ⌥(X) that are
highly dependent on instrumental variables X�, confounders
X�, and adjustment variables X⌥, respectively. These results
made a clear contrast to TARNet, which learns a single
representation without performing feature separation.

The same is true for the CATE estimation performance (Fig-
ure 3 (d)). The test PEHE of TARNet was larger than DPSW
and DRCFR, demonstrating the importance of data-driven
feature separation via weighted representation learning. By
contrast, our method achieved the lowest PEHE, thus indicat-
ing that our weight correction framework can successfully
improve the CATE estimation performance of DRCFR.

Performance under high-dimensional setup: We con-
firmed that our method also worked well with d =
600, 1200, . . . , 3000 (See Appendix C the detail).
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made a clear contrast to TARNet, which learns a single
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The same is true for the CATE estimation performance (Fig-
ure 3 (d)). The test PEHE of TARNet was larger than DPSW
and DRCFR, demonstrating the importance of data-driven
feature separation via weighted representation learning. By
contrast, our method achieved the lowest PEHE, thus indicat-
ing that our weight correction framework can successfully
improve the CATE estimation performance of DRCFR.

Performance under high-dimensional setup: We con-
firmed that our method also worked well with d =
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Figure 3: Learned encoder parameter di↵erences and test PEHEs on synthetic data. (a): Value di↵erence of W1 in encoder
�(X); (b): Value di↵erence of W1 in encoder �(X); (c): Value di↵erence of W1 in encoder ⌥(X); (d) Test PEHEs. With
TARNet, since it learns single encoder, we computed all parameter value di↵erences with weight matrix in same encoder.
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