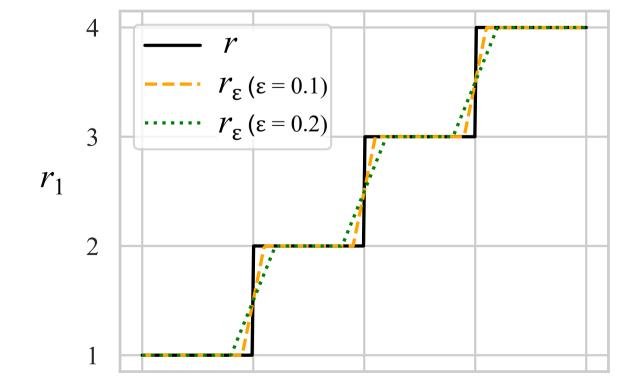


 \mathcal{W}_1

(DPSW)

of $\Upsilon(\mathbf{X})$ on A $\frac{\mathrm{P}(\Gamma(\boldsymbol{x}_i), \Delta(\boldsymbol{x}_i) \mid A = a_i)}{\mathrm{P}(\Gamma(\boldsymbol{x}_i), \Delta(\boldsymbol{x}_i) \mid A = a_i)} + \frac{\mathrm{P}(\Gamma(\boldsymbol{x}_i), \Delta(\boldsymbol{x}_i) \mid A = 1 - a_i)}{\mathrm{P}(\Gamma(\boldsymbol{x}_i), \Delta(\boldsymbol{x}_i) \mid A = a_i)}$ $\overline{\mathbf{P}(A = a_i \mid \Gamma(\mathbf{x}_i), \Delta(\mathbf{x}_i))} \coloneqq \overline{\pi_{a_i}(\Gamma(\mathbf{x}_i), \Delta(\mathbf{x}_i))}$

<u>Weakness</u>: Inverse probability weight *w_i* is numerically unstable: **Even slight propensity score estimation error leads to large CATE estimation error**


Weight smoothing with Pareto smoothing

Advantage:

- 1. Can obtain a less biased estimator than weight truncation
- 2. Can be combined with self-normalization

Main idea Improve CATE estimatio

- Pareto smoothing [Vehtari+; JMLR2024]: R with inverse CDF of generalized Paret $w_{[i]} = \mathbf{I}(i \ge n - M + 1) \hat{\mathbf{F}}^{-1} \left(\frac{i - (n - M) - 1/2}{M} \right)$
 - where $w_{[1]} \leq \cdots \leq w_{[n]}$, $M = \min\left\{ \left| \frac{n}{5} \right| \right\}$
 - Need to compute rank $\mathbf{r} = r(\mathbf{w})$: <u>Example</u>: If $w_3 \le w_1 \le w_2$, si

with differentiable one

- Fast soft rank [Blondel+; ICML2020]: Approximate as a solution to regularized LP
- Approximate indicator function with sigmoid $\mathbf{I}(i)$

$$i \ge j) \simeq \varsigma(i, j) \coloneqq \frac{1}{1 + e^{-\kappa(i-j)}}$$

Combining 1. & 2. leads to the following weight replacement formula:

$$\tilde{w}_i = \varsigma(r_i, n - M + 1) \tilde{F}^{-1} \left(\zeta \left(\frac{r_i - (n - M) - 1/2}{M} \right) \right)$$

 $+(1-\varsigma(r_i, n-M+1))w_i$ where $\zeta(x) := \min\{\max\{x, 0\}, 1\}$

Experimental results:

Semi-synthetic data

NTT

Table 1: Mean and standard deviation of test PEHE on semisynthetic datasets (Lower is better)

Method	News $(d = 3477)$	ACIC ($d = 177$)
LR-1	3.35 ± 1.28	0.72 ± 0.07
LR-2	5.36 ± 1.75	3.82 ± 0.15
SL	2.83 ± 1.11	1.69 ± 0.52
TL	2.55 ± 0.82	2.23 ± 0.50
XL	2.77 ± 1.01	1.05 ± 0.72

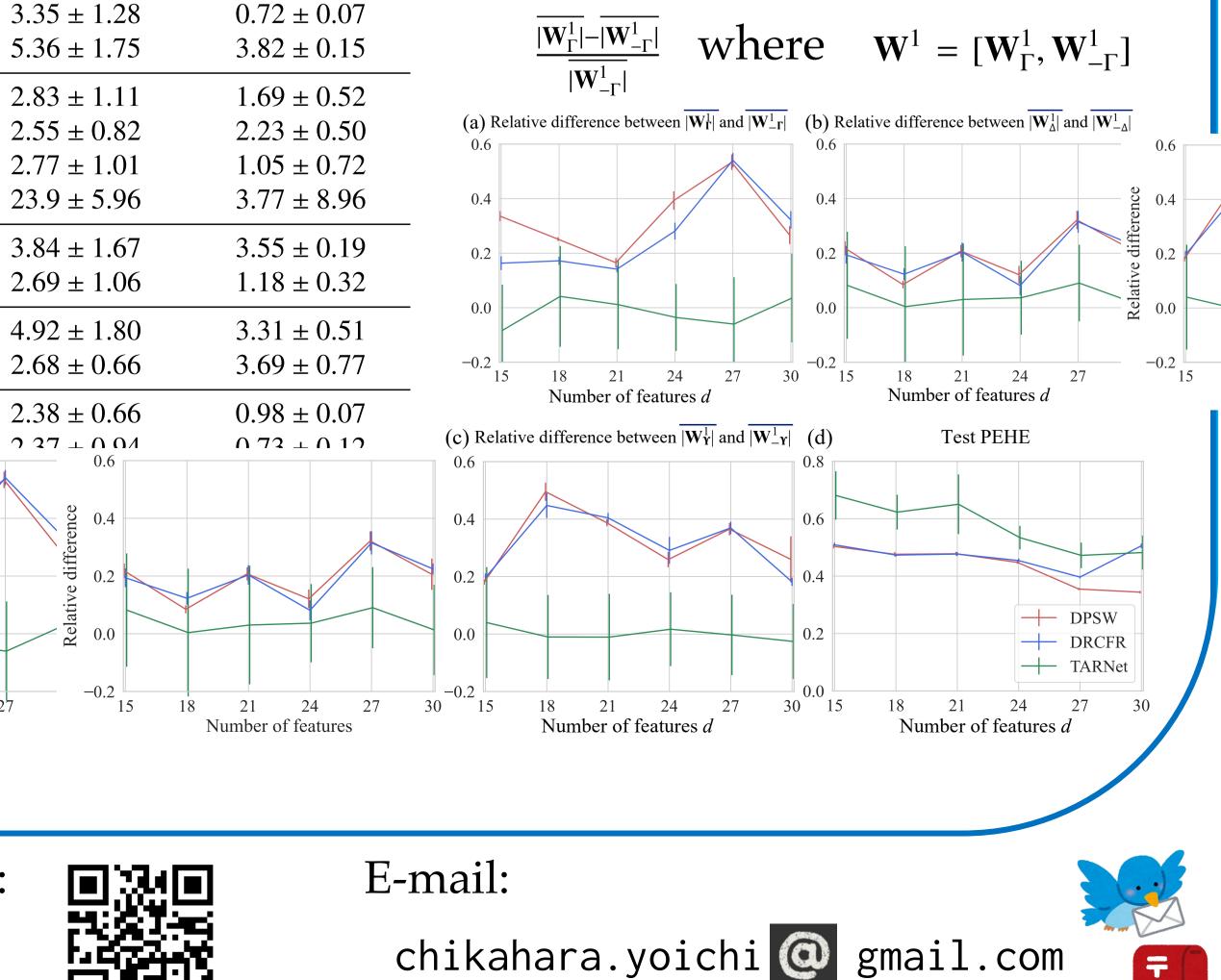
1: Initialize the parameters of Γ , Δ , Υ , π , h^0 , and h^1 2: while not converged do while not converged do Sample mini-batch from $\mathcal{D} = \{(a_i, \mathbf{x}_i, y_i)\}_{i=1}^n$ Update π by minimizing cross entropy loss in (2) end while while not converged do Sample mini-batch from $\mathcal{D} = \{(a_i, \mathbf{x}_i, y_i)\}_{i=1}^n$ **for** instance *i* in mini-batch **do** Compute weight w_i by (4) end for Compute differentiable rank $\mathbf{r} = r_{\varepsilon}(\mathbf{w})$ Estimate GPD parameters as $\tilde{\mu}$, $\tilde{\sigma}$, and $\tilde{\xi}$ for instance *i* in mini-batch **do** Replace each weight w_i with \tilde{w}_i in (20) end for Update Γ , Δ , Υ , h^0 , and h^1 by minimizing prediction loss in (3) with Pareto-smoothed weights $\{\tilde{w}_i\}$ 18: end while 19: end while

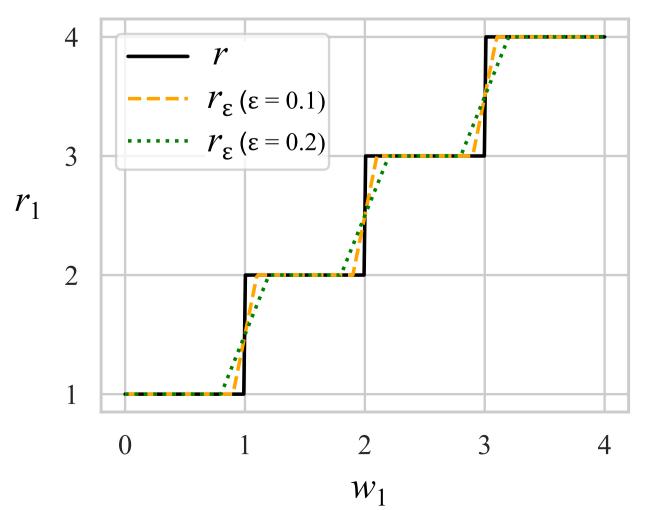
Synthetic data

11:

12:

13:


14:


15:

17:

Randomly generate features as $[X_{\Gamma}, X_{\Delta}, X_{\Upsilon}]^{\top} \in \mathbb{R}^d \ (d = 15, 18, \dots, 30)$

Measure the relative difference of average absolute values of the first-layered weight submatrices, e.g.,

 \mathcal{W}_1

Figure 2: Illustration of rank function r = r(w) (black) and differentiable rank functions $r = r_{\varepsilon}(w)$ (orange and green). Here we take input vector $\boldsymbol{w} = [w_1, 1, 2, 3]^{\top}$, vary w_1 's value, and look at how its rank $r_1 \in \mathbf{r}$ changes. When regularization parameter $\varepsilon \to 0$, r_{ε} converges to r [Blondel et al., 2020].

Difficulty: *r*(*w*) is piecewise constant: Gradient is always zero or undefined. We cannot perform gradient back propagation 🛞

Number of features

DRL

CF DML

TARNet

GANITE

DRCFR

0.4

0.2

0.0 Ke

-0.2

DDCED Morm

CF

