

Causal Inference in Time Series via Supervised Learning (IJCAI2018, to appear)

<u>Yoichi Chikahara</u>, Akinori Fujino NTT Communication Science Laboratories Kyoto, Japan

Copyright©2018 NTT corp. All Rights Reserved.

A bit about myself

- Name: Yoichi Chikahara (近原 鷹一)
- Contact: chikahara.yoichi@lab.ntt.co.jp
- Education:

- > 2013.03: <u>B. Sc. from Keio University</u>
- 2015.03: <u>M. Info. Sci. & Tech. from University of Tokyo</u> DNA information analysis lab. (Miyano lab.) in Dept. of Computer Science
- 2015.04 Now: <u>Researcher @ NTT Communication Science</u> <u>Laboratories</u>
- Research:
 - Machine Learning, Bioinformatics / Systems Biology

Causal Inference in Time Series

Causal inference in time series

- Given time series data
- Infer causal relationships between variables

Innovative B&D by N

• Finding that R&D expenditures *influences* total sales is useful for companies

Innovative R&D by NT

Application 2: Bioinformatics

• Discovering gene regulatory relationships is useful for drug discovery

Innovative R&D by NT

What is "causal relationship"?

How can we define *causal relationships* between variables?

Granger causality [Granger1969]

X is the cause of Y

if the past values of *X* are **helpful in predicting** the future values of *Y*

Clive W. J. Granger (1934-2009)

In Summary,

Weakness: Model selection problem

Problem

- ✓ Selecting appropriate regression models is difficult (needs a deep understanding of data analysis)
- ✓ It is known that existing approach **does not work** when regression models cannot be well fitted to data

Related work [ICML15, JMLR15, CVPR17]: Causal inference from i.i.d. data via classification

• In fact, in case of i.i.d. data, there are several <u>existing methods</u> based on classification

Related work [ICML15, JMLR15, CVPR17]: 1) Train a classifier

Classifier

Training data

(Data where causal relationships are known)

Related work [ICML15, JMLR15, CVPR17]: 2) Infer causal relationship by using trained classifier

(Data where causal relationships are <u>unknown</u>)

Our approach: Causal inference <u>from time series data</u> via supervised learning

17

Classification approach seems good,

but how can we solve Granger causality identification problem via classification?

assification app definition of brindefinition of brindefinition of the finition of the

Revisiting assumption of Granger causality: Causal direction **never** changes over time

• Granger causality assumes that

At any time point *t*, the causal direction is the same

(Our method also uses the assumption)

Revisiting definition of Granger causality

if the following holds:

$P(Y_{t+1}|S_X, S_Y) \neq P(Y_{t+1}|S_Y)$

at any time point t

 $S_X = \{x_1, \cdots, x_t\}$

 $S_Y = \{y_1, \cdots, y_t\}$

Revisiting definition of Granger causality

Copyright©2018 NTT corp. All Rights Reserved.

if $P(Y_{t+1}|S_X, S_Y) = P(Y_{t+1}|S_Y)$

Building a classifier for Granger causality identification

Innovative R&D by NTT

Building a classifier for Granger causality identification

Building a classifier for Granger causality identification

Innovative R&D by NTT

Label Assignment Rules

If
$$\begin{cases} P(Y_{t+1}|S_X, S_Y) \neq P(Y_{t+1}|S_Y) \\ P(X_{t+1}|S_X, S_Y) = P(X_{t+1}|S_X) \\ \text{then} \quad X \to Y \\ \end{cases}$$

If
$$\begin{cases} P(Y_{t+1}|S_X, S_Y) = P(Y_{t+1}|S_Y) \\ P(X_{t+1}|S_X, S_Y) \neq P(X_{t+1}|S_X) \\ \text{then} \quad X \leftarrow Y \\ \end{cases}$$

If
$$\begin{cases} P(Y_{t+1}|S_X, S_Y) = P(Y_{t+1}|S_Y) \\ P(X_{t+1}|S_X, S_Y) = P(Y_{t+1}|S_Y) \\ P(X_{t+1}|S_X, S_Y) = P(X_{t+1}|S_X) \\ \text{then} \quad No \ Causation \\ \end{cases}$$

Key information lies in distributions

-> To determine whether or not the two distributions are identical, how do we obtain feature vectors for classification?

Representing features of distributions

Innovative R&D by NT1

Representing features of distributions

30

Innovative R&D by NT1

Representing features of distributions

Kernel mean embedding: map a distribution to a point in feature space called RKHS

When using Gaussian kernel,

novative R&D by N

Reformulating label assignment rules

• By mapping distributions to points, label assignment rules can be rephrased as

If
$$\begin{pmatrix} \mu_{X_{t+1}|S_X,S_Y} = \mu_{X_{t+1}|S_X} \\ \mu_{Y_{t+1}|S_X,S_Y} \neq \mu_{Y_{t+1}|S_Y} \\ \text{then } X \to Y \\ \end{bmatrix}$$

If $\begin{pmatrix} \mu_{X_{t+1}|S_X,S_Y} \neq \mu_{X_{t+1}|S_X} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \text{then } X \leftarrow Y \\ \end{bmatrix}$
If $\begin{pmatrix} \mu_{X_{t+1}|S_X,S_Y} = \mu_{X_{t+1}|S_Y} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \end{bmatrix}$
Feature Space \mathcal{H}_Y
Feature Space \mathcal{H}_Y
If $\begin{pmatrix} \mu_{X_{t+1}|S_X,S_Y} = \mu_{X_{t+1}|S_Y} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \end{pmatrix}$
Feature Space \mathcal{H}_Y

- Innovative R&D by NTT
- We only have to determine <u>whether or not</u> <u>the two points are equal over time *t*</u>
- We obtain feature vectors
 by using the distance between the points
 (called maximum mean discrepancy (MMD) [Gretton+ NIPS2007]
 in kernel method community)

Feature representation

- Innovative R&D by NTT
- By utilizing MMDs, we can obtain feature vectors that are sufficiently different depending on Granger causality

Experiment 1: Synthetic test data

- Prepare 300 pairs of bivariate time series
- Evaluate the number of time series whose causal relationships are correctly inferred (i.e., Test Accuracy)

Proposed > Existing classification approach for i.i.d. data Our feature representation is effective

	Proposed	RCC	GC_{VAR}	\mathbf{GC}_{GAM}	\mathbf{GC}_{KER}	TE
$\begin{array}{l} Temperature \\ (T=200) \end{array}$	0.961 (0.011)	0.432 (0.242)	0.950	0.848	0.234	0.492
$\begin{array}{l} \textit{Radiation} \\ (T = 200) \end{array}$	0.987 (0.053)	$\begin{array}{c} 0.515 \\ (0.345) \end{array}$	0.156	0.0	0.782	0.394
$\begin{array}{l} \textit{Internet} \\ (T = 200) \end{array}$	1.0 (0.0)	0.478 (0.222)	0.157	0.387	0.261	0.498
Sun Spots (T = 200)	1.0 (0.0)	0.435 (0.182)	0.908	0.704	0.076	0.522
River Runoff (T = 200)	0.958 (0.058)	0.399 (0.193)	0.684	0.406	0.155	0.485

Our Proposed sufficiently worked better than other methods

How can we extend proposed approach to multivariate time series?

Granger causality definition for multivariate time series

• Conditional Granger causality [Geweke JASA1984]: compare two conditional distributions given past values of the third variable Z

if $P(Y_{t+1}|S_X, S_Y, S_Z) = P(Y_{t+1}|S_Y, S_Z)$

Feature representation

• Similarly, we map conditional distributions to points in feature spaces and measure the distance

• By using additional MMDs, we formulate feature representation for multivariate time series

Experiment 3: Multivariate real-world data

Macro F1 score and micro F1 score

	$\mathbf{Proposed}_{tri}$	$\mathbf{Proposed}_{bi}$	\mathbf{GC}_{VAR}	\mathbf{GC}_{GAM}	\mathbf{GC}_{KER}
macro F1 score	0.483	0.415	0.457	0.437	0.351
micro F1 score	0.637	0.549	0.567	0.513	0.436
			is better ⅔Higher is better		

Innovative R&D by NTT

Macro F1 score and micro F1 score

	v					
	$\mathbf{Proposed}_{tri}$	$\mathbf{Proposed}_{bi}$	\mathbf{GC}_{VAR}	\mathbf{GC}_{GAM}	\mathbf{GC}_{KER}	
macro F1 score	0.483	0.415	0.457	0.437	0.351	
micro F1 score	0.637	0.549	0.567	0.513	0.436	
			*Higher is better			

Proposed with extended feature representation worked better

Innovative R&D by NT

Conclusion

- Classification approach to Granger causality identification
 - ✓ Requires no selection of regression models
 - Performs sufficiently better than existing modelbased approach
 - \checkmark Can be applied to multivariate time series
- <u>Future work</u>:
 - ✓ Addressing more complicated setting
 - \blacktriangleright e.g., causal direction changes over time *t*

Questions ?