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A bit about myself 
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 2015.03: M. Info. Sci. & Tech. from University of Tokyo 

 DNA information analysis lab. (Miyano lab.) in Dept. of Computer Science  

 2015.04 – Now: Researcher @ NTT Communication Science 

Laboratories 

 

• Research: 

 Machine Learning, Bioinformatics / Systems Biology 

mailto:chikahara.yoichi@lab.ntt.co.jp


Causal Inference  

in Time Series 
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Causal inference in time series 

• Given time series data 

• Infer causal relationships between variables 

Input: Time Series Data 

X 

Y 

X Y 

cause effect 

Output: Causal Relationships 
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Application 1: Economics 

• Finding that R&D expenditures influences 

total sales is useful for companies 

total sales 

R&D 

expenditures 

cause effect 
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Application 2: Bioinformatics 

• Discovering gene regulatory relationships is 

useful for drug discovery 
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What is “causal relationship”? 

 

How can we define causal 

relationships between variables? 
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A definition of temporal causality 

 

X is the cause of Y  

if the past values of X are helpful in predicting 

the future values of Y 

Clive W. J. Granger (1934-2009) 

Granger causality [Granger1969] 
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Existing approach:  

Compare prediction errors with/without using values of X 

If errors are significantly reduced 

by using values of X,  

X Y 

cause effect 

Y 

X 

Y 

t 

(Two) Regression 

Models 

Y 

X 

Y 

Predicted Values 
Prediction Errors 
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In Summary, 

Regression 

Models X Y 
Y 

X 
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Weakness: Model selection problem 

X Y 

Data1 

Which regression model  

should I use ? 

X Y 

X Y 

Data2 

Data3 

…
 

…
 

…
 

VAR 

Model 

Gaussian 

Processes 

GAM 
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Weakness: Model selection problem 

• Problem 

 Selecting appropriate regression models is difficult 

(needs a deep understanding of data analysis)  

 

 It is known that existing approach does not work 

when regression models cannot be well fitted to data 
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Our approach: 

Causal inference via classification  

X Y 

Data1 
 

 

 

 

Same 

Classifier 

 

 

 

 

X Y 

X Y 

Data2 

Data3 

…
 

…
 

No need to select  

regression models! 
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Related work [ICML15, JMLR15, CVPR17]: 
Causal inference from i.i.d. data via classification 

• In fact, in case of i.i.d. data, there are several 

existing methods based on classification  

Copyright©2016  NTT corp.  All Rights Reserved .

X→Y

X←Y

C  
, -‐‐‐ 2 05 5   0 1 .

Classifier 

i.i.d. data 
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Related work [ICML15, JMLR15, CVPR17]: 

1) Train a classifier 

Copyright©2016  NTT corp.  All Rights Reserved .

X→Y

X←Y

C  
, -‐‐‐ 2 05 5   0 1 .

Classifier 
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X→Y

X←Y

C  
, -‐‐‐ 2 05 5   0 1 .

... 

Training data 

(Data where causal relationships are known) 
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Copyright©2016  NTT corp.  All Rights Reserved .

X→Y

X←Y

C  
, -‐‐‐ 2 05 5   0 1 .

Test Data 

Related work [ICML15, JMLR15, CVPR17]: 
2) Infer causal relationship by using trained classifier 

Trained 

Classifier 

(Data where causal relationships 

are unknown) 



17 Copyright©2018  NTT corp. All Rights Reserved. 

Classifier 

Test Data 

Training Data 

... 

Our approach: 

Causal inference from time series data via supervised learning  



Classification approach seems good, 

 

but how can we solve  

Granger causality identification problem  

via classification? 

 



Classification approach seems good, 

 

but how can we solve  

Granger causality identification problem  

via classification? 
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• Granger causality assumes that  

     

 

 

 

 

 (Our method also uses the assumption) 

X 

Y 
X Y 

At any time point t, the causal direction is the same 

Revisiting assumption of Granger causality: 

Causal direction never changes over time 
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Revisiting definition of Granger causality 

if the following holds: 

X Y 

cause effect 

X 

Y 

t 

at any time point t 
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Revisiting definition of Granger causality 

if the following holds: 

X Y 

cause effect 

X 

Y 

t 

Distribution of Yt+1  

given past values of Y 

Distribution of Yt+1  

given past values of Y and X 
≠ 

SX is useful in prediction! 
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Revisiting definition of Granger causality 

if 

X Y 

X Y 

if 
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Classifier 

Building a classifier for Granger causality identification 

If 

If 

If 

X Y 

Y X 

X Y 

Y X 

X Y 

Y X 

, then assign 

, then assign 

, then assign 

Label Assignment Rules 
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Classifier 

Building a classifier for Granger causality identification 

If 

If 

If 

X Y 

Y X 

X Y 

Y X 

X Y 

Y X 

, then assign 

, then assign 

, then assign 

Label Assignment Rules 

Test Data 
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Building a classifier for Granger causality identification 

If 

If 

If 

then 

then 

then 

Label Assignment Rules  



Key information lies in distributions 

 
-> To determine whether or not     

the two distributions are identical, 

how do we obtain feature vectors 

for classification? 



Key information lies in distributions 

 
-> To determine whether or not     

the two distributions are identical, 

how do we obtain feature vectors 

for classification? 
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Representing features of distributions 

E[Z] 

to represent mean 
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Representing features of distributions 

E[Z] 

E[Z2] 

to represent 

mean & variance 
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Feature Space 

(RKHS) 

Representing features of distributions 

• Kernel mean embedding: map a distribution  

to a point in feature space called RKHS 

When using Gaussian kernel, 
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• By mapping distributions to points,                           

label assignment rules can be rephrased as 

Feature Space 

Reformulating label assignment rules  

If 

If 

If 

then 

then 

then 

Feature Space 
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Feature representation 

• We only have to determine whether or not   

the two points are equal over time t 

 

• We obtain feature vectors         
by using the distance between the points   
(called maximum mean discrepancy (MMD) [Gretton+ NIPS2007]   

in kernel method community)  
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Feature representation 

... (Since MMDs are finite sample estimates, 

they cannot become exactly zero) 

• By utilizing MMDs, we can obtain feature vectors 

that are sufficiently different depending on Granger 

causality  
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Classifier 
（Random Forest） 

Experiments 

Test Data 

Training Data 

• linear time series from VAR model 

• Nonlinear time series from VAR + sigmoid 

... 
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Experiment 1: Synthetic test data 

 

 

 

 

 

 

• Prepare 300 pairs of bivariate time series 

• Evaluate the number of time series whose causal 

relationships are correctly inferred (i.e., Test Accuracy) 

Linear Test Data 

-- generated from VAR model 

 

 

Nonlinear Test Data 

-- generated from  
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Test accuracy 

Linear Test Data Nonlinear Test Data 
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Test accuracy 

Linear Test Data Nonlinear Test Data 

Existing Granger causality methods 

Test accuracy strongly depends on the regression model 
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Test accuracy 

Linear Test Data Nonlinear Test Data 

GCKER < GCGAM 

Kernel regression cannot be well fitted since time series are too short 
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Test accuracy 

Linear Test Data Nonlinear Test Data 

Proposed > Existing classification approach for i.i.d. data 

Our feature representation is effective  
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Classifier 

Real-world 

Test Data 

Synthetic 

Training Data 

... 

e.g., River Runoff 

X: Precipitation 

Y: River runoff 

(※truth:             ) 

Experiment 2: Real-world test data 

True causal directions are given in literatures 
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Test accuracy 

Our Proposed sufficiently worked better  

than other methods 



How can we extend proposed approach 

to multivariate time series? 
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Granger causality definition for 

multivariate time series 

• Conditional Granger causality [Geweke JASA1984]: 

compare two conditional distributions given past 

values of the third variable Z 

if 
X Y 

X Y 
if 

Z 

Z 
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Feature representation 

• Similarly, we map conditional distributions to points 

in feature spaces and measure the distance 

 

 

 

 

 

 

• By using additional MMDs, we formulate feature 

representation for multivariate time series 
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Classifier 

Real-world 

Test Data 

Synthetic 

Training Data 

Yeast cell cycle gene expression data 
[Spellman+ 1998] 

14 variables (genes)  

Experiment 3: Multivariate real-world data 

True causal directions are given in database 
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Macro F1 score and micro F1 score 

※Higher is better 
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Macro F1 score and micro F1 score 

※Higher is better 

 

 

 

Proposed with extended feature representation 

worked better 
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Conclusion 

• Classification approach to Granger causality 
identification 

 Requires no selection of regression models 

 Performs sufficiently better than existing model-
based approach 

 Can be applied to multivariate time series  

 

• Future work: 

 Addressing more complicated setting 

 e.g., causal direction changes over time t 



Questions ? 


