
Accurate and Fair Machine Learning 
based on Causality

因果関係に基づく公平・⾼精度な機械学習の実現

NTT Communication Science Laboratories
Yoichi Chikahara

1



About Me
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• Research Interest: Causal Inference and ML.
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Outline

1. Machine Learning and Fairness
• Basic setup
• Why do we need causality?

2. Introduction to Causal Effects
• Potential outcomes, Average causal effect (ACE)
• Mediation Analysis

3. Learning Fair Predictive Models based on Causality
• Causality-based fairness criteria
• Challenges: learn under weak assumptions
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• ML is increasingly used to make decisions for 
individuals

• Predicted decisions should be
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Background to ML and fairness

Application examples:
loan approval, job hiring, child abuse screening, and recidivism prediction

Accurate
Fair w.r.t. sensitive features

(e.g., gender, race, religion, 
disabilities, sexual orientation, etc.)

and



Problem setting example

Training a fair classifier
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Training data
A

Gender
Q

Qualification
D

Department
M

Physical 
strength

Y
Decision

Female A Economics B Accept
Male B Literature B Accept
Male C Science C Reject

Accurate & fair classifier

ℎ!"(𝐴, 𝑄, 𝐷,𝑀)

prediction loss penalty on 
unfairnessSolve constrained/penalized

optimization problem



Law defines the discrimination
Example:

• Disparate impact:
• Unintentional discrimination. 
• Even an apparently neutral policy should be prohibited 

if it adversely affects a privileged group (i.e., majority) 
more than unprivileged group (i.e., minority)
› First defined by the U.S. Law called Title VII of the 1964 Civil Rights Act
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How does unintentional discrimination occur?

• There are many unintentional factors that yield the 
correlation:
• Use of features that are correlated with sensitive feature A
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A Y

M

Gender Predicted outcome

D

intentional

unintentional
(indirect discrimination)



Fairness criteria for addressing disparate impact
Example:

Demographic parity (a.k.a., statistical parity):

• In binary classification, the percentage of individuals 
assigned to class 1 should be identical:

• In general, demographic parity requires independence 
between prediction !𝑌 and sensitive feature A

• For instance, HSIC [Gretton+; 2005] can be used to measure the independence
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P !𝑌 = 1 𝐴 = 0 = P( !𝑌 = 1|𝐴 = 1)

!𝑌 𝐴⊨



Weakness of correlation-based fairness criteria
1. No correlation does not imply no causation

• Correlation between A and !𝑌 is determined by
1. Causation from A to #𝑌 (A→…→ #𝑌)

2. Confounding bias due to confounder C (A← C→ #𝑌)

• This indicates that even when there is no correlation, 
sensitive feature A may have causal effects on outcome !𝑌
(i.e., no correlation does not imply no causation)
• This is a serious issue because discrimination claims in 

the Laws are judged based on causality L

10Survey on Causal-based Machine Learning Fairness Notions [Makhlouf+; arXiv2021]



• In real-world scenarios, several types of indirect 
discrimination might be allowed.
• Example: To make hiring decisions for physically demanding jobs, 

indirect effects through physical strength M may be legally allowed.

• In this case, imposing no correlation is an unnecessarily 
restrictive fairness constraint.
• This is problematic because our goal is to achieve a 

tradeoff between fairness and accuracy L
11

Weakness of correlation-based fairness criteria
2. Cannot address scenarios with allowed indirect discrimination
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How can we measure unfair causal effects 

from the observed data?

13

A X1 … Xd Y
1 … Accept
0 … Reject
0 … Accept
1 … Reject
1 … Reject

i
1
2
3
4
5

sensitive feature observed outcome

Observed data

A

X

Y

Causal graph



Basic notions
• Potential outcome Y(a)
• Outcome Y that is observed when sensitive feature is A=a
• 𝑌 = 𝑎𝑌 1 + 1 − 𝑎 𝑌(0) for 𝑎 ∈ {0, 1}

• Causal effect (a.k.a., treatment effect) for an individual:
• Difference between potential outcomes: Y(1) – Y(0)
• Can never be observed
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A X1 … Xd Y Y(1) Y(0) Y(1) - Y(0)

1 … Accept Accept ? ?
0 … Reject ? Reject ?
0 … Accept ? Accept ?
1 … Reject Reject ? ?
1 … Reject Reject ? ?

i

1
2
3
4
5



• A structural equation model (SEM) [Pearl; 2000] contains
• Observed variables (a.k.a., endogenous variables): 𝐴, 𝑋, 𝑌

• Unobserved noise variables (a.k.a., exogenous variables): 𝑈!, 𝑈", 𝑈#
• Deterministic functions: 𝑓!, 𝑓", 𝑓#
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𝑈*

𝑈+

𝑈,

𝑋 = 𝑓+(𝑈+)

𝐴 = 𝑓*(𝑋, 𝑈*)

𝑌 = 𝑓,(𝐴, 𝑋, 𝑈,)

Structural equations:

How are potential outcomes defined?

A

X

Y
SEM M



• Definition: Potential outcome is outcome Y in a different 
SEM whose structural equation of A is replaced.
• Such a replacement of structural equations is called 

intervention do(A=a)
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𝑋 = 𝑓+(𝑈+)

𝐴 = 1

𝑌 1 = 𝑓,(1, 𝑋, 𝑈,)

How are potential outcomes defined with an SEM?

𝑈+

𝑈,

A=1

X

Y(1)

Interventional SEM Mdo(A=1) 



Average of causal effects can be estimated

• Average causal effect (ACE) across individuals can be estimated

• Note: E[𝑌(𝑎)] ≠ E[𝑌|𝐴 = 𝑎]
• E.g., E[𝑌(1)] ≠ E[𝑌|𝐴 = 1]

• Why? Because group A=0 and group A=1 often have different 
attributes X. Taking average over different groups does not make sense.
Example:
› Age
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1
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ACE Estimation

• Ignorability Assumption: Features 𝑿 contains all confounders
• Formally, A Y 𝑎 | 𝑿 holds for any 𝑎 ∈ {0, 1}

• Under this assumption, ACE can be estimated by
• g-formula: 
› E 𝑌 1 − 𝑌 0 = ∑𝑿 E 𝑌 𝐴 = 1, 𝑿 − E[𝑌|𝐴 = 0, 𝑿] P(𝑿)

• Inverse probability weighting (IPW)
› Importance sampling technique for computing an expected 

value w.r.t. P(𝑿) using samples from P(𝑿|𝐴 = 𝑎)

› E 𝑌 1 − 𝑌 0 = E[ %
&(!()|")

𝑌]-E[ ),%
),&(!()|")

𝑌]
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How can we measure causal effects   

along unfair pathways?
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A D M X Y
1 Accept
0 Reject
0 Accept
1 Reject
1 Reject

i
1
2
3
4
5

sensitive feature observed outcome

Observed data

Complicated
causal graph

Unfair pathways



How can we measure causal effects along 
pathways?

• Consider causal graph with mediator M
• Mediator M is also affected by 𝐴

• Outcome Y is influenced by A and M

• Potential mediators M(a)
• Mediator M that is observed when sensitive feature is A=a
• 𝑀 = 𝑎𝑀 1 + 1 − 𝑎 𝑀(0) for 𝑎 ∈ {0, 1}

• Using potential mediators, causal effect for an individual is 
formulated as
• Y(1, M(1)) – Y(0, M(0))

• This causal effect corresponds to a total causal effect along 
all pathways from A→Y 20

A

X

Y
M



Direct effects and Indirect effects

• Using potential mediators, we can also measure causal 
effects along direct and indirect pathways, i.e., a natural 
direct effect (NDE) and a natural indirect effect (NIE):
• NDE = Y(1, M(0)) – Y(0, M(0))
• NIE = Y(0, M(1)) – Y(0, M(0))
› Note: Nested potential outcomes 𝑌(0,𝑀(1)) and 𝑌(1,𝑀(0)) are 

defined with two interventional SEMs, Mdo(A=0) and Mdo(A=1)
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A

X

Y
M



Path-specific causal effects (PSE) [Avin+; IJCAI2005]

• Consider more complicated causal graph                                  
with multiple mediators

• Causal effects along pathways 𝜋 ={A→Y, A→D→Y} are 
measured by path-specific causal effects (PSE) [Avin+; IJCAI2005] as
• PSE(𝜋) = 𝑌 1 ∥ 𝜋 − 𝑌 0
› 𝑌(1 ∥ 𝜋) ≡ 𝑌(1, 𝐷 1 ,𝑀(0))
› 𝑌(0) ≡ 𝑌(0, 𝐷 0 ,𝑀(0))

• Mean potential outcome E[𝑌!⟸#∥%] can be similarly computed by
• Edge-g-formula [Shpitser+; AS2015]

• Inverse probability weighting
22

Changed to A=1 if the variable is 
a node in pathway set 𝝅



Outline

1. Machine Learning and Fairness
• Basic setup
• Why do we need causality?

2. Introduction to Causal Effects
• Potential outcomes, Average causal effect (ACE)
• Mediation Analysis

3. Learning Fair Predictive Models based on Causality
• Causality-based fairness criteria
• Challenges: learn under weak assumptions

23



Problem setting 

Training a fair classifier with causal graph
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Training data

Accurate & fair classifier

ℎ!"(𝐴, 𝑄, 𝐷,𝑀)

prediction loss penalty on 
unfairnessSolve constrained/penalized

optimization problem

Causal graph

Unfair pathways
𝜋 = {𝐴 → 𝑌, 𝐴 → 𝐷 → 𝑌}

• Given by prior 
domain knowledge

• Inferred by causal 
discovery algorithm



• To formulate potential outcomes for prediction 𝑌, we 
consider a little bit different SEM:
• Observed variables (a.k.a., endogenous variables): 𝐴, 𝑋, 𝑌

• Unobserved noise variables (a.k.a., exogenous variables): 𝑈!, 𝑈", 𝑈#
• Deterministic functions: 𝑓!, 𝑓", ℎ-
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𝑈*

𝑈+

𝑈,

𝑋 = 𝑓+(𝑈+)

𝐴 = 𝑓*(𝑋, 𝑈*)

𝑌 = ℎ" (𝐴, 𝑋, 𝑈,)

Structural equations:

Potential outcomes for prediction

A

X

Y
SEM Mp

Prediction 𝑌 is determined 
by classifier ℎ-



Causality-based fairness criteria
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Fair on ACE (FACE) 
[Khademi+; WWW2019]

ACE: E 𝑌 1 − E 𝑌 0 = 0

Path-specific population-level fairness
[Nabi+; AAAI2018]

PSE: E 𝑌(1 ∥ 𝜋) − E 𝑌(0) = 0

Counterfactual fairness 
[Kusner+; NeurIPS2017 Best Paper]

E 𝑌 1 |𝐴 = 𝑎, 𝑿 = 𝒙
− E 𝑌 0 |𝐴 = 𝑎, 𝑿 = 𝒙 = 0

for all 𝑎 and 𝒙

Path-specific counterfactual fairness 
(PC-fairness) [Wu+; NeurIPS2019]

E 𝑌(1 ∥ 𝜋)|𝐴 = 𝑎, 𝑿 = 𝒙
− E 𝑌(0)|𝐴 = 𝑎, 𝑿 = 𝒙 = 0

for all 𝑎 and 𝒙

Group-level Individual-level

Total
effects

Path-specific
effects

All pathways from A to Y
are unfair

We can choose unfair pathways Note: For simplicity, 𝑌 is regarded as binary



Causality-based fairness criteria
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• Constrain average PSE across all individuals:

Group-level fairness:
Remove the mean PSE [Nabi+; AAAI2018]
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Average PSE
on prediction

E 𝑌(1 ∥ 𝜋) − E 𝑌(0) = 0

Prediction by ℎ-



• However, removing the mean PSE does not imply that 
predictions are fair for each individual

Group-level fairness:
Remove the mean PSE [Nabi+; AAAI2018]

29

Average PSE is zero,
but some individuals

suffer from 
discrimination



• Separate individuals into subgroups with identical 
attributes of sensitive feature 𝐴 and non-sensitive features 𝑿

• Remove the mean PSE for each subgroup

• Formally, this fairness criterion (PC-fairness [Wu+; NeurIPS2019]) 
is defined as

Individual-level fairness:
Remove mean PSE for each subgroup [Chiappa+; AAAI2019]
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Average PSE is zero
for each subgroup

of individuals

Attributes 𝐴 and 
𝑿 are identical

E 𝑌(1 ∥ 𝜋)|𝐴 = 𝑎, 𝑿 = 𝒙 − E 𝑌(0)|𝐴 = 𝑎, 𝑿 = 𝒙 = 0
for all 𝑎 and 𝒙



Weakness of existing methods for achieving 
PC-fairness

• Issue: Conditional expectation of PSEs are difficult to 
estimate (due to conditioning on mediators L)
• Existing methods aim to approximate the true SEM; 

however, this approximation requires a restrictive 
functional assumption on the SEM L

31

𝑋 = 𝑓+(𝑈+)

𝐴 = 𝑓*(𝑋, 𝑈*)

𝑌 = ℎ" (𝐴, 𝑋, 𝑈,)

Structural equations: These structural equations
are assumed to be expressed as  
additive noise model (ANM)

𝑉 = 𝑓 𝒑𝒂 𝑽 + 𝑈9

However, it is unclear whether 
such an assumption holds L



Learning individually fair classifier with path-specific 
causal-effect constraint [Chikahara+; AISTATS2021]

Our proposal: Impose a constraint on the following probability:
• Probability of Individual Unfairness (PIU)	[Chikahara+;	AISTATS2021]

PIU: P(𝑌(0) ≠ 𝑌(1 ∥ 𝜋))

• This joint probability can be never inferred (because we can 
never jointly obtain potential outcomes 𝑌(0) and 𝑌(1 ∥ 𝜋))

• However, upper bound on PIU can be estimated without 
making restrictive functional assumptions on the SEM J

P(𝑌(0) ≠ 𝑌(1 ∥ 𝜋)) ≤ 2PJ(𝑌(0) ≠ 𝑌(1 ∥ 𝜋))

= 2(P 𝑌 0 = 1 1 − P 𝑌 1 ∥ 𝜋 = 1 + (1 − P 𝑌 0 = 1 P(𝑌 1 ∥ 𝜋 = 1))

32P.: independent joint distribution of potential outcomes𝑌 is binary 



Learning individually fair classifier with path-specific 
causal-effect constraint [Chikahara+; AISTATS2021]

• Zero PIU is sufficient to guarantee PC-fairness J

• So we formulate our penalty function 𝐺L using the estimator of 
upper bound on PIU:

where          and           are IPW–based estimators of P 𝑌 0 = 1
and P 𝑌 1 ∥ 𝜋 = 1 ; for instance, 
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Learning individually fair classifier with path-specific 
causal-effect constraint [Chikahara+; AISTATS2021]

• Proposed method experimentally strikes a good balance 
between accuracy and fairness J
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There are many open problems and challenges 

Take-home messages: Causality-based fairness is powerful, 
but causal inference requires assumptions. This makes it 
challenging to develop practical causality-based framework.

• Uncertain causal graph structure:
• Multi-World Fairness (MWF) [Russell+; NeurIPS2017] uses 

multiple candidates of causal graphs

• Unidentifiable setting:
• When there are unobserved confounders
› Proxy variables, partial identification, etc. are helpful

Dealing with such settings remains an open problem
35



Conclusion

• Law defines discrimination. How do we measure it?
• Causality-based fairness can detect confounding bias
• Mediation analysis is helpful to strike a good balance 

between prediction accuracy and fairness
• There are many challenging open problems.
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Thank you!


