

Accurate and Fair Machine Learning based on Causality

因果関係に基づく公平・高精度な機械学習の実現

NTT Communication Science Laboratories Yoichi Chikahara

About Me

- Name: Yoichi Chikahara
- **<u>Research Interest</u>**: Causal Inference and ML.

Causal Discovery

Potential Outcomes **Bayesian Network Structure Learning** ACE(ATE) Score-based Constraint-based do-calculus Latent Confounders ACT Differentiable Structure Learning Interventional Distributions Granger Causality Functional Assumptions Transfer Entropy Instrumental Variables Pearl's Causal Hierarchy Proxy Variables Partial Identification Independent Causal Mechanism **Mediation Analysis** NDE NIE PSE **Today's topic** How strong is this causality? $X \rightarrow Y, X \leftarrow Y$, or no causation? What happens if X's value is changed?

Х→Ү

Causal Effect Estimation

Outline

- 1. Machine Learning and Fairness
 - Basic setup
 - Why do we need causality?
- 2. Introduction to Causal Effects
 - Potential outcomes, Average causal effect (ACE)
 - Mediation Analysis
- 3. Learning Fair Predictive Models based on Causality
 - Causality-based fairness criteria
 - Challenges: learn under weak assumptions

Outline

- 1. Machine Learning and Fairness
 - Basic setup
 - Why do we need causality?
- 2. Introduction to Causal Effects
 - Potential outcomes, Average causal effect (ACE)
 - Mediation Analysis
- 3. Learning Fair Predictive Models based on Causality
 - Causality-based fairness criteria
 - Challenges: learn under weak assumptions

Background to ML and fairness

• ML is increasingly used to make decisions for individuals

<u>Application examples</u>: loan approval, job hiring, child abuse screening, and recidivism prediction

• Predicted decisions should be

AccurateFair w.r.t. sensitive features(e.g., gender, race, religion,
disabilities, sexual orientation, etc.)

Problem setting example

Training a fair classifier

A	Q	D	M	Y
Gender	Qualification	Department	Physical strength	Decision
Female	А	Economics	В	Accept
Male	В	Literature	В	Accept
Male	С	Science	С	Reject

Solve constrained/penalized optimization problem

$$\min_{\theta} \quad \frac{1}{n} \sum_{i=1}^{n} L_{\theta}(\boldsymbol{x}_{i}, y_{i}) + \lambda G_{\theta}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}),$$

Accurate & fair classifier

$$h_{\widehat{\theta}}(A,Q,D,M)$$

Law defines the discrimination Example:

- Disparate impact:
 - Unintentional discrimination.
 - Even an apparently neutral policy should be prohibited if it adversely affects a privileged group (i.e., majority) more than unprivileged group (i.e., minority)
 - > First defined by the U.S. Law called *Title VII of the 1964 Civil Rights Act*

How does unintentional discrimination occur?

- There are many *unintentional* factors that yield the correlation:
 - Use of features that are correlated with sensitive feature *A*

Fairness criteria for addressing disparate impact Example:

Demographic parity (a.k.a., statistical parity):

• In binary classification, the percentage of individuals assigned to class 1 should be identical:

$$P(\hat{Y} = 1 | A = 0) = P(\hat{Y} = 1 | A = 1)$$

• In general, demographic parity requires independence between prediction \hat{Y} and sensitive feature *A*

Males

$\widehat{Y} \perp A$

• For instance, HSIC [Gretton+; 2005] can be used to measure the independence

Females

Weakness of correlation-based fairness criteria 1. No correlation does not imply no causation

Confounder

М

D

Α

 \widehat{Y}

- Correlation between *A* and \hat{Y} is determined by
 - 1. Causation from *A* to \hat{Y} ($A \rightarrow ... \rightarrow \hat{Y}$)
 - 2. Confounding bias due to confounder $C (A \leftarrow C \rightarrow \hat{Y})$

- This indicates that even when there is no correlation, sensitive feature A may have causal effects on outcome Ŷ (i.e., no correlation does not imply no causation)
 - This is a serious issue because discrimination claims in the Laws are judged based on causality ☺

Weakness of correlation-based fairness criteria

2. Cannot address scenarios with allowed indirect discrimination

- In real-world scenarios, several types of indirect discrimination might be allowed.
 - <u>Example</u>: To make hiring decisions for physically demanding jobs, indirect effects through physical strength *M* may be legally allowed.

- In this case, **imposing no correlation is an unnecessarily restrictive fairness constraint**.
 - This is problematic because our goal is to achieve a tradeoff between fairness and accuracy ⊗

Outline

- 1. Machine Learning and Fairness
 - Basic setup
 - Why do we need causality?
- 2. Introduction to Causal Effects
 - Potential outcomes, Average causal effect (ACE)
 - Mediation Analysis
- 3. Learning Fair Predictive Models based on Causality
 - Causality-based fairness criteria
 - Challenges: learn under weak assumptions

Basic notions

- **Potential outcome** Y(a)
 - Outcome Y that is observed when sensitive feature is *A*=a
 - Y = aY(1) + (1 a)Y(0) for $a \in \{0, 1\}$
- Causal effect (a.k.a., treatment effect) for an individual:
 - Difference between potential outcomes: Y(1) Y(0)
 - Can never be observed

i	A	X_1		X_d	Ŷ	Y(1)	Y(0)	Y(1) - Y(0)
1	1		•••		Accept	Accept	?	?
2	0		•••		Reject	?	Reject	?
3	0		•••		Accept	?	Accept	?
4	1		•••		Reject	Reject	?	?
5	1		•••		Reject	Reject	?	?

How are potential outcomes defined?

- A structural equation model (SEM) [Pearl; 2000] contains
 - Observed variables (a.k.a., endogenous variables): A, X, Y
 - Unobserved noise variables (a.k.a., exogenous variables): U_A , U_X , U_Y
 - Deterministic functions: f_A , f_X , f_Y

Structural equations:

- $X = f_X(U_X)$ $A = f_A(X, U_A)$
- $Y = f_Y(A, X, U_Y)$

How are potential outcomes defined with an SEM?

- <u>Definition</u>: **Potential outcome is outcome** *Y* **in a different SEM whose structural equation of** *A* **is replaced**.
 - Such a replacement of structural equations is called *intervention do*(*A*=*a*)

Average of causal effects can be estimated

Average causal effect (ACE) across individuals can be estimated

11AcceptAccept??20Reject?Reject?Accept30Accept?Accept?Average can be estimated41RejectReject???51RejectReject???	i	A	X_1		X_d	Ŷ	Y(1)	Y(0)	Y(1) - Y(0)	
20Reject?Reject?Accept?AcceptAccept?Accept?AcceptAccept?Accept?AcceptAccept?AcceptYYAcceptYY <t< td=""><td>1</td><td>1</td><td></td><td>•••</td><td></td><td>Accept</td><td>Accept</td><td>?</td><td>?</td><td></td></t<>	1	1		•••		Accept	Accept	?	?	
30Accept?Accept?41RejectReject??51RejectReject??	2	0				Reject	?	Reject	?	Avorage can
41RejectReject??51RejectReject??	3	0		•••		Accept	?	Accept	?	be estimated
5 1 Reject Reject ? ?	4	1		•••		Reject	Reject	?	?	
	5	1				Reject	Reject	?	?	

Note: $E[Y(a)] \neq E[Y|A = a]$

- E.g., $E[Y(1)] \neq E[Y|A = 1]$
- Why? Because group A=0 and group A=1 often have different attributes X. Taking average over different groups does not make sense.

<u>Example</u> : > Age	old old old old old young old	young young old young young old old young
Ē	l = 1 (Has prior conviction)	A = 0 (No prior conviction)

ACE Estimation

- *Ignorability* Assumption: Features **X** contains all *confounders*
 - Formally, A \coprod Y(*a*) | **X** holds for any $a \in \{0, 1\}$
- Under this assumption, ACE can be estimated by
 - *g-formula*:
 - $E[Y(1) Y(0)] = \sum_{X} (E[Y|A = 1, X] E[Y|A = 0, X]) P(X)$
 - *Inverse probability weighting* (IPW)
 - > Importance sampling technique for computing an expected value w.r.t. P(X) using samples from P(X|A = a)

$$E[Y(1) - Y(0)] = E\left[\frac{a}{P(A=1|X)}Y\right] - E\left[\frac{1-a}{1-P(A=1|X)}Y\right]$$

Unfair pathways

How can we measure causal effects along pathways?

- Consider causal graph with mediator *M*
 - Mediator *M* is also affected by *A*
 - Outcome *Y* is influenced by *A* and *M*
- Potential mediators *M*(a)

- Mediator *M* that is observed when sensitive feature is A=a
- M = aM(1) + (1 a)M(0) for $a \in \{0, 1\}$
- Using potential mediators, causal effect for an individual is formulated as
 - Y(1, M(1)) Y(0, M(0))
- This causal effect corresponds to a total causal effect along all pathways from $A \rightarrow Y$

Direct effects and Indirect effects

- Using potential mediators, we can also measure causal effects along direct and indirect pathways, i.e., a natural direct effect (NDE) and a natural indirect effect (NIE):
 - NDE = Y(1, M(0)) Y(0, M(0))
 - NIE = Y(0, M(1)) Y(0, M(0))
 - > <u>Note:</u> Nested potential outcomes Y(0, M(1)) and Y(1, M(0)) are defined with two interventional SEMs, $M_{do(A=0)}$ and $M_{do(A=1)}$

Path-specific causal effects (PSE) [Avin+; IJCAI2005]

• Consider more complicated causal graph with multiple mediators

 Causal effects along pathways π ={A→Y, A→D→Y} are measured by path-specific causal effects (PSE) [Avin+; IJCAI2005] as

•
$$PSE(\pi) = Y(1 \parallel \pi) - Y(0)$$

- > $Y(1 \parallel \pi) \equiv Y(1, D(1), M(0))$
- $Y(0) \equiv Y(0, D(0), M(0))$

Changed to A=1 if the variable is a node in pathway set π

- Mean potential outcome $E[Y_{A \leftarrow 1 \parallel \pi}]$ can be similarly computed by
 - *Edge-g-formula* [Shpitser+; AS2015]
 - Inverse probability weighting

Outline

- 1. Machine Learning and Fairness
 - Basic setup
 - Why do we need causality?
- 2. Introduction to Causal Effects
 - Potential outcomes, Average causal effect (ACE)
 - Mediation Analysis
- 3. Learning Fair Predictive Models based on Causality
 - Causality-based fairness criteria
 - Challenges: learn under weak assumptions

Problem setting

Training a fair classifier with causal graph

Training data

A Gender	Q Qualification	D Department	M Physical strength	Y Decision
Female	А	Economics	В	Accept
Male	В	Literature	В	Accept
Male	С	Science	С	Reject

- Given by prior domain knowledge
- Inferred by causal discovery algorithm

Unfair pathways $\pi = \{A \rightarrow Y, A \rightarrow D \rightarrow Y\}$

Solve constrained/penalized optimization problem

•

Accurate & fair classifier

```
h_{\widehat{\theta}}(A,Q,D,M)
```

Potential outcomes for prediction

- To formulate potential outcomes for prediction *Y*, we consider a little bit different SEM:
 - Observed variables (a.k.a., endogenous variables): *A*, *X*, *Y*
 - Unobserved noise variables (a.k.a., exogenous variables): U_A , U_X , U_Y

Structural equations:

$$X = f_X(U_X)$$

$$A = f_A(X, U_A)$$

$$Y = h_{\theta} (A, X, U_Y)$$

Prediction *Y* is determined by classifier h_{θ} 2

Causality-based fairness criteria

Total M effects

All pathways from *A* to *Y* are unfair

Fair on ACE (FACE) [Khademi+; WWW2019]

ACE: E[Y(1)] - E[Y(0)] = 0

Individual-level

Counterfactual fairness [Kusner+; NeurIPS2017 Best Paper]

E[Y(1)|A = a, X = x]- E[Y(0)|A = a, X = x] = 0 for all a and x

Path-specific counterfactual fairness (PC-fairness) [Wu+; NeurIPS2019]

 $E[Y(1 \parallel \pi) | A = a, X = x]$ - E[Y(0)|A = a, X = x] = 0 for all a and x

Path-specific effects

A M D

Path-specific population-level fairness [Nabi+; AAAI2018]

PSE: $E[Y(1 || \pi)] - E[Y(0)] = 0$

We can choose unfair pathways

Note: For simplicity, *Y* is regarded as binary

Causality-based fairness criteria

We can choose unfair pathways

<u>Note</u>: For simplicity, *Y* is regarded as binary

Group-level fairness: Remove the mean PSE [Nabi+; AAAI2018]

• Constrain average PSE across **all** individuals:

i	Α	D	M	Q	Ŷ	$Y(1\parallel\pi)$	Y(0)	$Y(1 \parallel \pi) \textbf{-} Y(0)$	
1	1	0	Α	С	1	?	?	?	٦
2	0	1	В	В	0	?	0	?	
3	0	1	В	В	1	?	1	?	┝
4	1	2	С	Α	0	?	?	?	
5	1	3	С	В	0	?	?	?	

Prediction by h_{θ}

Average PSE on prediction

$E[Y(1 || \pi)] - E[Y(0)] = 0$

Group-level fairness:

Remove the mean PSE [Nabi+; AAAI2018]

• However, removing the mean PSE does **not imply that predictions are fair for each individual**

į	Α	D	M	Q	Ŷ	$Y(1 \parallel \pi)$	Y(0)	$Y(1 \parallel \pi) \textbf{-} Y(0)$
1	1	0	Α	С	1	?	?	1
2	0	1	В	В	0	?	0	-1
3	0	1	В	В	1	?	1	1
4	1	2	С	Α	0	?	?	-1
5	1	3	С	В	0	?	?	0

Average PSE is zero, but **some individuals suffer from discrimination**

Individual-level fairness: Remove mean PSE for each subgroup [Chiappa+; AAAI2019]

- Separate individuals into subgroups with identical attributes of sensitive feature *A* and non-sensitive features *X*
- Remove the mean PSE for each subgroup

									1 Ittill atto 11 alla
i	Α	D	M	Q	Ŷ	$Y(1 \parallel \pi)$	Y(0)	$Y(1 \ \pi) - Y(0)$	X are identical
1	1	0	Α	С	1	?	?	0	
2	0	1	В	В	0	?	0	-1	Average PSE is zero
3	0	1	В	В	1	?	1	1	for each subgroup
4	1	2	С	Α	0	?	?	0	- of individuals
5	1	3	С	В	0	?	?	0	}

 Formally, this fairness criterion (PC-fairness [Wu+; NeurIPS2019]) is defined as

$$E[Y(1 \parallel \pi) | A = a, X = x] - E[Y(0) | A = a, X = x] = 0$$

for all a and x

Attributes A and

Weakness of existing methods for achieving PC-fairness

- <u>Issue</u>: Conditional expectation of PSEs are difficult to estimate (due to conditioning on mediators ☺)
 - Existing methods aim to approximate the true SEM; however, this approximation requires a restrictive functional assumption on the SEM ⁽²⁾

Structural equations:

 $X = f_X(U_X)$ $A = f_A(X, U_A)$

 $Y = h_{\theta} (A, X, U_Y)$

These structural equations are assumed to be expressed as *additive noise model (ANM)* $V = f(pa(V)) + U_V$

However, it is unclear whether such an assumption holds 🛞

Learning individually fair classifier with path-specific causal-effect constraint [Chikahara+; AISTATS2021]

Our proposal: Impose a constraint on the following probability:

- Probability of Individual Unfairness (PIU) [Chikahara+; AISTATS2021] PIU: $P(Y(0) \neq Y(1 \parallel \pi))$
- This joint probability can be never inferred (because we can never jointly obtain potential outcomes Y(0) and $Y(1 \parallel \pi)$)
- However, upper bound on PIU can be estimated without making restrictive functional assumptions on the SEM [©]
 P(Y(0) ≠ Y(1 || π)) ≤ 2P^I(Y(0) ≠ Y(1 || π))

 $= 2(P(Y(0) = 1)(1 - P(Y(1 \parallel \pi) = 1)) + (1 - P(Y(0) = 1)P(Y(1 \parallel \pi) = 1))$

Y is binary

P^{*I*}: independent joint distribution of potential outcomes

Learning individually fair classifier with path-specific causal-effect constraint [Chikahara+; AISTATS2021]

- Zero PIU is sufficient to guarantee PC-fairness ☺
- So we formulate our penalty function G_{θ} using the estimator of upper bound on PIU:

$$\min_{\theta} \quad \frac{1}{n} \sum_{i=1}^{n} L_{\theta}(\boldsymbol{x}_{i}, y_{i}) + \lambda G_{\theta}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}),$$
$$G_{\theta}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}) = \hat{p}_{\theta}^{A \Leftarrow 1 \parallel \pi} (1 - \hat{p}_{\theta}^{A \Leftarrow 0}) + (1 - \hat{p}_{\theta}^{A \Leftarrow 1 \parallel \pi}) \hat{p}_{\theta}^{A \Leftarrow 0}$$

where $\hat{p}_{\theta}^{A \leftarrow 0}$ and $\hat{p}_{\theta}^{A \leftarrow 1 \parallel \pi}$ are IPW–based estimators of P(Y(0) = 1) and P(Y(1 \parallel \pi) = 1); for instance,

$$\hat{p}_{\theta}^{A \Leftarrow 0} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(a_i = 0) \hat{w}_i c_{\theta}(a_i, q_i, d_i, m_i) \qquad \hat{p}_{\theta}^{A \Leftarrow 1 \parallel \pi} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(a_i = 1) \hat{w}_i' c_{\theta}(a_i, q_i, d_i, m_i)$$

Learning individually fair classifier with path-specific causal-effect constraint [Chikahara+; AISTATS2021]

 Proposed method experimentally strikes a good balance between accuracy and fairness [©]

Method	Synth	German	Adult
Proposed FIO PSCF	$\begin{array}{c} 80.0 \pm 0.9 \\ 84.8 \pm 0.6 \\ 74.8 \pm 1.6 \end{array}$	$75.0 \\ 78.0 \\ 76.0$	$75.2 \\ 81.2 \\ 73.4$
Unconstrained Remove	$\begin{array}{c} 88.2 \pm 0.9 \\ 76.9 \pm 1.3 \end{array}$	$\begin{array}{c} 81.0\\ 73.0\end{array}$	$\begin{array}{c} 83.2\\74.7\end{array}$

Table 2: Test accuracy (%) on each dataset

Proposed (Red one) can eliminate unfair PSE for each individual ☺

Figure 2: Four statistics of unfairness on test data

There are many open problems and challenges

Take-home messages: Causality-based fairness is powerful, but causal inference requires assumptions. This makes it challenging to develop practical causality-based framework.

- <u>Uncertain causal graph structure</u>:
 - Multi-World Fairness (MWF) [Russell+; NeurIPS2017] uses multiple candidates of causal graphs
- <u>Unidentifiable setting</u>:
 - When there are unobserved confounders
 - > Proxy variables, partial identification, etc. are helpful

Dealing with such settings remains an open problem

Conclusion

- Law defines discrimination. How do we measure it?
- Causality-based fairness can detect confounding bias
- Mediation analysis is helpful to strike a good balance between prediction accuracy and fairness
- There are many challenging open problems.

