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Causal inference In time series A

* (Given time series data
 Infer causal relationships between variables

cause effect
Input: Time Series Data Output: Causal Relationships
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Application: e.g., Economics ;

* FiInding that R&D expenditures influences
total sales is useful for companies

cause effect

total sales
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NVhat 1s “causal relationship’




A definition of temporal causality

‘Granger causality [Granger1969] ‘

XIS the cause of Y

IT the past values of X are helpful in predicting
the future values of Y

Clive W. J. Granger (1934-2009)
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Existing Approach:
Using regression models

Regression
Models

»

B 0~
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Existing approach:
Compare prediction errors with/without using values. @f X

If errors are significantly reduced
by using values of X,
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(Two) Regression
Models
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cause effect
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Weakness of existing approach

1{ == Which regression model

should | use ?
Regression
Models
VAR models
e Gaussian Processes
« GAM
e ...etc.

Misspecification of regression models
leads to low Inference accuracy

® NTT Copyright©2018 NTT corp. All Rights Reserved. 8



Our approach:
Causal inference via supervised learning

¥ _—  No need to select
regression models!
Test Data
WMUMM» | Classifier |
- At

X-r
Training Data No Causation
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Our goal:

Building a classifier that follows label assignment rules

Test Data

it

(8 &

Label Assignment Rules

,thenassign  y _, vy
,thenassign X « Y

, then assign No Causation
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ldeas for building classifier

The answer lies in Granger causality definition



Revisiting definition of Granger causality o

Granger causality defines that
cause effect

OO=(Y) if Potscsn# Palsy
@ @ if P(YitSx.S9) = P(Yi1lSy)

X \/\/\/\‘ESX={I1,'” , Xt}
Y ANMSy = (v, )

t
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Whether or not two distributions are equal
IS Important

o P(YI+I|SX1-SY) # P(YI+I|SY)

:

Yii1 T )

How can we determine whether or not
two distributions are equal?
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Representing features of distributions <

e Using kernel mean embedding to map
conditional distribution to a point in feature space

Kernel mean embedding

Feature Space
(RKHS)

P(Yi1lSx,Sy)
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Whether or not distance between points Is zero
IS Important s

P(Yi1lSx,Sy)

# P(Y:+11Sy)

(maximum mean discrepancy) 0
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Our goal:
Building a classifier for Granger causality identification

* By using MMDs, label assignment rules can be
rephrased as follows:

'f MMDX = 0
MMD, _ + 0 FXilSx.Sy
then X > Y @MMDy |
JL!XI+||SX
1f MMDX F 0 Feature Space Hx
MMD;,, = () HY, 1S x.S
then X &— Y .&;ﬂyﬁﬂs}f
MMD;,
MMDy = () Feature Space H
It MMD = () P '

then No Causation




To do so:

Utilizing MMDs as features for classification

* By utilizing MMDs, we can obtain feature vectors
that are sufficiently different depending on Granger
causality

miﬂ

No Causation
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Experiments

Classifier

Test Data (e.g., Random Forest) X Y

ol Wy

Training Data‘ .
(Synthetic data) No Causation
X VoL

/‘b VN
/No Causation
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Results on synthetic test data S

N
Linear Test Data
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Nonlinear Test Data
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Results on synthetic test data

[T
Linear Test Data Nonlinear Test Data
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Existing Granger causality methods
Test accuracy strongly depended on the regression model
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Results on synthetic test data

Innovative R&D by NTT

car lest Data Nonlinear T¢

[}

0.5%
- L >
0 —3 19
£0.6 N £0.6
3 | 5
< <
$0.4 2041
T k= —K 7 3 = ..{!!Eg-u_ !E —
0.2 0.2

SIGC @ GCy,g W GCy -

) RCC & GC TE —

- ' , ; ; 0 —

20 40 60 80 100 120 % 60 100 140 180 240

Time Series Length

Time Series Length

Proposed method

Performance was sufficiently good
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Questions ?

Come and see Poster #1571
for more detailed information!




