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Q. Treatment effects are different across individuals. Why?

A. Find features related to treatment effect heterogeneity !
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Weaknesses of mean-based approaches

1 NTT 2 Kyoto University

1. Detecting distributional treatment effect modifiers

2. Estimating importance measure with IPW and RFFs

3. Multiple tests with conditional randomization test (CRT)

Experimental results
We compare our method with the two baselines: 
1. SI-EM [1]: Mean-based approach
2. Naive: Approximate the null distribution via a naive bootstrap
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Many existing methods use a complex ML model to accurately   
estimate heterogeneous treatment effects across individuals.
However, they offer no answer to the following question:

Different individuals have different treatment effects. Why?
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e.g., vaccination, education program e.g., immunity, grades

Traditional mean-based approaches

To answer this question, we consider the feature selection problem:

!! ... !" " # #! ## #! − ##
Male 15 y.o. 0 82 ? 82 ?

Male 80 y.o. 0 174 ? 174 ?

Female 64 y.o. 1 135 135 ? ?

Female 32 y.o. 1 110 110 ? ?

Input: Observations of features !, 
treatment ", and outcome #

Output: Features 
related to treatment effect 

heterogeneity

• We experimentally show that our method successfully
finds the features related to treatment e↵ect heterogene-
ity and outperforms the existing mean-based method.

2 PRELIMINARIES

2.1 PROBLEM SETUP

Suppose that we have a sample of n individuals D =
{(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y) for i = 1, . . . , n. Here A 2

{0, 1} is a binary treatment (A = 1 if an individual is treated;
otherwise, A = 0), X = [X1, . . . , Xd]> is d-dimensional
features (a.k.a. covariates), where each feature Xm 2 X

(m = 1, . . . , d) takes either discrete or continuous values,
and Y 2 R is a continuous-valued outcome.1 Here we as-
sume that (1) features X are measured before applying the
treatment and observing outcome Y (i.e., features X are
pretreatment variables and not mediators or colliders [Elw-
ert and Winship, 2014]) and that (2) features X contain all
confounders, i.e., the variables that a↵ect treatment A and
outcome Y . Note that these assumptions are standard in the
existing work [Imai and Ratkovic, 2013, Zhao et al., 2022].

Given sample D, we solve the problem of selecting the
features in X that influence the e↵ect of treatment A on out-
come Y . In this problem, which features should be selected
depends on the measurement scale of the treatment e↵ect
[Hernán and Robins, 2020, Chapter 4]. There are two mea-
surement scales: additive scale Y1

� Y0 and multiplicative
scale Y1/Y0, where Y0 and Y1 are random variables that are
referred to as potential outcomes, each of which represents
the outcome when A = 0 and when A = 1, respectively [Ru-
bin, 1974]. In this study, we define the treatment e↵ect for
each individual on an additive scale as Y1

� Y0 because this
scale is standard and widely used in numerous applications
[Lee et al., 2018, Schochet et al., 2014, Taddy et al., 2016].

Unfortunately, we cannot observe treatment e↵ect Y1
� Y0.

This is because we cannot jointly observe two potential
outcomes Y0 and Y1; we only observe either Y0 or Y1, which
is obtained as Y = (1 � A)Y0 + AY1 (A 2 {0, 1}). For this
reason, existing methods use the average treatment e↵ect
across individuals, which can be estimated from the data.

2.2 MEAN-BASED APPROACHES

Many existing methods [Tian et al., 2014, Zhao et al., 2022]
seek the features whose attributes a↵ect the degree of the
average treatment e↵ect called CATE, which is defined for
each feature’s attribute, Xm = x (m = 1, . . . , d), as follows:

Tm(x) B E[Y1
� Y0

| Xm = x]

= E[Y1
| Xm = x] � E[Y0

| Xm = x]. (1)

1We assume Y 2 R to use the kernel approximation technique
[Rahimi et al., 2007], which is described in Section 3.3.

Table 1: Joint probability tables of potential outcomes in
Example 1. Nonzero probabilities are shown in bold. Total
expresses marginal potential outcome probabilities.

P(Y0,Y1
| X = 0)

Y0
Y1

-1 0 1 Total

-1 0 0 0 0
0 0.5 0 0.5 1.0
1 0 0 0 0

Total 0.5 0 0.5 1.0

P(Y0,Y1
| X = 1)

Y0
Y1

-1 0 1 Total

-1 0 0 0 0
0 0 1.0 0 1.0
1 0 0 0 0

Total 0 1.0 0 1.0

CATE Tm(x) is an average treatment e↵ect over the individ-
uals who share an identical attribute, Xm = x. Note that this
CATE is di↵erent from the one conditioned on all features
X, which is an inference target of the recent causal inference
methods [Chang and Dy, 2017, Hassanpour and Greiner,
2019, Hill, 2011, Künzel et al., 2019, Nie and Wager, 2021,
Shalit et al., 2017, Yoon et al., 2018].

Using CATE Tm (m = 1, . . . , d), the features that influence
the degree of the average treatment e↵ect are defined as the
following treatment e↵ect modifiers:

Definition 1 (Rothman et al. [2008]). Feature Xm is said to
be a treatment e↵ect modifier if there are at least two values
of Xm, xm and x?m (xm , x?m), such that CATE Tm in (1) takes
di↵erent values, i.e., Tm(xm) , Tm(x?m).

Definition 1 states that feature Xm is a treatment e↵ect mod-
ifier if CATE Tm(x) is not a constant with respect to value
Xm = x. Roughly speaking, when we group individuals by
their Xm’s values and compute the average treatment e↵ect
in each group of the individuals, if there are at least two
groups with di↵erent averages, then feature Xm is a treat-
ment e↵ect modifier [VanderWeele, 2009].

The existing methods seek such treatment e↵ect modifiers
by fitting a regression model that is linear in treatment A
with a sparse regularizer [Imai and Ratkovic, 2013, Sechidis
et al., 2021, Tian et al., 2014, Zhao et al., 2022].

2.3 WEAKNESS OF MEAN-BASED APPROACHES

Since the above mean-based methods rely on the average
treatment e↵ect, they cannot detect the features whose at-
tributes do not influence the average treatment e↵ect but do
a↵ect other functionals of the joint distribution of potential
outcomes, such as the covariance between potential out-
comes and the treatment e↵ect variance [Russell, 2021]. To
illustrate such a feature, consider the following toy example:

Example 1. Let Y0,Y1
2 {�1, 0, 1} ⇢ R be the potential

outcomes and let X 2 {0, 1} be a binary feature. Suppose
that joint distribution P(Y0,Y1

| X) is given as Table 1. Then
feature X’s values are irrelevant to the average treatment

Using the CATE conditioned on a single feature (i.e., the average 
treatment effect across individuals with identical attribute !! = #):

the existing methods (e.g., [1]) seek treatment effect modifiers:

Example:
Mean-based methods may overlook important features 
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finds the features related to treatment e↵ect heterogene-
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1. Novel feature importance measure
2. Its computationally efficient estimator
3. Selection algorithm that controls Type I error
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Goal: Detect the features whose values affect the functionals of 
joint distribution P()#, )"|!! = #) (e.g., treatment effect variance)

Idea: If the discrepancy between P()#|!! = #) and P()"|!! = #)
depends on !! = #, then joint distribution also depends on !! = #. 

P()!|+)

P()"|+)

P()!|+⋆)
P()"|+⋆)

Different
P()", )!|+) P()", )!|+⋆)

Different

Measured by a kernel MMD [2]: 

e↵ect and the covariance between potential outcomes but
relevant to the treatment e↵ect variance:

E[Y1
� Y0

| X = 0] = E[Y1
� Y0

| X = 1] = 0

Cov[Y0,Y1
| X = 0] = Cov[Y0,Y1

| X = 1] = 0

Var[Y1
� Y0

| X = 0] = 1; Var[Y1
� Y0

| X = 1] = 0.

Joint distribution P(Y0,Y1
| X) presented in Table 1 shows

that feature X is related to a di↵erence in treatment e↵ects:
While no individual with attribute X = 1 receives any treat-
ment e↵ect, those with X = 0 get positive or negative e↵ects.
However, since the CATE values do not depend on X, the
existing mean-based methods will incorrectly conclude that
feature X is unrelated to the treatment e↵ect heterogeneity.
This implies that using CATE is insu�cient to capture such
distributional treatment e↵ect heterogeneity and might lead
to overlooking important features.

3 PROPOSED METHOD

3.1 DETECTING DISTRIBUTIONAL
HETEROGENEITY

We propose a feature selection framework for discovering
the features related to distributional treatment e↵ect het-
erogeneity. To find such features, we consider the prob-
lem of determining whether the values of each feature Xm
(m = 1, . . . , d) influence the functionals of the joint distri-
bution of potential outcomes P(Y0,Y1

| Xm), such as the
average treatment e↵ect, the treatment e↵ect variance, and
the covariance between potential outcomes. 2 This problem
is challenging because we cannot infer joint distribution
P(Y0,Y1

| Xm), since we can never jointly observe potential
outcomes Y0 and Y1 as described in Section 2.1.

To overcome this challenge, we propose measuring the im-
portance of each feature Xm (m = 1, . . . , d) by quantifying
how greatly Xm’s values influence the discrepancy between
conditional distributions P(Y0

| Xm) and P(Y1
| Xm). This

idea is motivated by the following fact: if the discrepancy
between P(Y0

| Xm) and P(Y1
| Xm) varies with Xm’s values,

then joint distribution P(Y0,Y1
| Xm) is also changeable

depending on Xm’s values, and some functionals of the joint
distribution depend on Xm. This fact can be easily proved
by taking its contraposition, as shown in Appendix A.

Such an idea enables us to detect feature X in Example 1,
whose values influence the treatment e↵ect variance. This

2Identifying which functionals are a↵ected by each feature’s
values is extremely challenging due to the impossibility of inferring
the joint distribution. One possible solution is to use techniques
for estimating the lower and upper bounds on these functionals
[Chen et al., 2016, Russell, 2021, Shingaki and Kuroki, 2021].
Although such bounds require several additional assumptions, they
have been successfully applied in several fields, including fairness-
aware machine learning [Chikahara et al., 2021].

is because, in this example, the discrepancy between con-
ditional potential outcome distributions P(Y0

| X) and
P(Y1

| X) changes depending on X’s values.

Note, however, that our idea does not always work well. This
is because there are counterexamples where feature Xm’s
values do not a↵ect the discrepancy between conditional
distributions P(Y0

| Xm) and P(Y1
| Xm) but influence joint

distribution P(Y0,Y1
| Xm). We take a counterexample in

Appendix B and present the empirical performances in such
cases in Appendix E.1. Nevertheless, compared with the
existing methods, we can detect a wider variety of features
relevant to treatment e↵ect heterogeneity, which leads to a
better understanding of the underlying causal mechanisms.

3.2 FEATURE IMPORTANCE MEASURE

To express the importance of each feature Xm (m = 1, . . . , d),
we measure the discrepancy between distributions P(Y0

|

Xm) and P(Y1
| Xm) using the MMD [Gretton et al., 2012].

In fact, there are several MMD-based metrics for measuring
the discrepancy between potential outcome distributions
[Bellot and van der Schaar, 2021, Muandet et al., 2021, Park
et al., 2021]. However, these metrics cannot be applied in
our setting because they are not designed for the conditional
distributions conditioned on a single feature; we give details
of this reason in Section 5.

Consequently, we develop an MMD-based metric for con-
ditional distributions P(Y0

| Xm) and P(Y1
| Xm). Let

kY : R⇥R! R be a positive-definite kernel function. Then
the squared MMD between the conditional distributions
conditioned on feature value Xm = x is defined as

D2
m(x) B MMD2(P(Y0

| Xm = x),P(Y1
| Xm = x))

=EY0,Y00 |Xm=X0m=x[kY (Y0,Y00)] + EY1,Y10 |Xm=X0m=x[kY (Y1,Y10)]

� 2EY0,Y1 |Xm=x[kY (Y0,Y1)], (2)

where superscript prime 0 denotes an independent copy
of each random variable, and expectation EY0,Y00 |Xm=X0m=x

is taken with respect to P(Y0,Y00
| Xm = X0m = x); other

expectations are taken in a similar manner. This metric has
the following property: If kY belongs to the class of ker-
nel functions called characteristic kernels [Gretton et al.,
2012], then squared MMD is D2

m(x) = 0 if and only if
P(Y0

| Xm = x) = P(Y1
| Xm = x). Examples of characteris-

tic kernels include the Gaussian kernel; we provide a brief
overview on characteristic kernels in Appendix C.

Based on squared MMD D2
m, we define the features related

to distributional treatment e↵ect heterogeneity as the follow-
ing distributional treatment e↵ect modifiers:

Definition 2. Feature Xm is said to be a distributional treat-
ment e↵ect modifier if there are at least two values of Xm,
xm and x?m (xm , x?m), such that squared MMD D2

m in (2)
takes di↵erent values, i.e., D2

m(xm) , D2
m(x?m).

To detect the MMD value variation, we formulate our feature 
importance measure as the variance:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribu-
tion called a propensity score, and I(A = a) is an indicator
function that takes 1 if A = a; otherwise 0. In addition, we
make the two standard assumptions: conditional ignorability
(a.k.a. strong ignorability), which requires conditional in-
dependence relation {Y0,Y1

}?? A | X, and positivity, which
imposes support condition 0 < e(x) < 1 for all x [Rosen-
baum and Rubin, 1983]; the former is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):

WCMMD2
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We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer D2
m(x) with estimator (5), we estimate the expected

values taken over the conditional distribution conditioned
on Xm = x using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
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l=1 I(xm,l = x)
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we can estimate the expected values in (5) by

bD2
m(x) B

nX

i=1

nX

j=1

⇣
!0,x

i !
0,x
j + !

1,x
i !

1,x
j

⌘
kY (yi, y j)

� 2
nX

i=1

nX

j=1

!0,x
i !

1,x
j kY (yi, y j).

(7)

For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:
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Pn
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1

hXm
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wa(ai, xi), (8)

where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
0
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

e↵ect and the covariance between potential outcomes but
relevant to the treatment e↵ect variance:

E[Y1
� Y0

| X = 0] = E[Y1
� Y0

| X = 1] = 0

Cov[Y0,Y1
| X = 0] = Cov[Y0,Y1

| X = 1] = 0

Var[Y1
� Y0

| X = 0] = 1; Var[Y1
� Y0

| X = 1] = 0.

Joint distribution P(Y0,Y1
| X) presented in Table 1 shows

that feature X is related to a di↵erence in treatment e↵ects:
While no individual with attribute X = 1 receives any treat-
ment e↵ect, those with X = 0 get positive or negative e↵ects.
However, since the CATE values do not depend on X, the
existing mean-based methods will incorrectly conclude that
feature X is unrelated to the treatment e↵ect heterogeneity.
This implies that using CATE is insu�cient to capture such
distributional treatment e↵ect heterogeneity and might lead
to overlooking important features.

3 PROPOSED METHOD

3.1 DETECTING DISTRIBUTIONAL
HETEROGENEITY

We propose a feature selection framework for discovering
the features related to distributional treatment e↵ect het-
erogeneity. To find such features, we consider the prob-
lem of determining whether the values of each feature Xm
(m = 1, . . . , d) influence the functionals of the joint distri-
bution of potential outcomes P(Y0,Y1

| Xm), such as the
average treatment e↵ect, the treatment e↵ect variance, and
the covariance between potential outcomes. 2 This problem
is challenging because we cannot infer joint distribution
P(Y0,Y1

| Xm), since we can never jointly observe potential
outcomes Y0 and Y1 as described in Section 2.1.

To overcome this challenge, we propose measuring the im-
portance of each feature Xm (m = 1, . . . , d) by quantifying
how greatly Xm’s values influence the discrepancy between
conditional distributions P(Y0

| Xm) and P(Y1
| Xm). This

idea is motivated by the following fact: if the discrepancy
between P(Y0

| Xm) and P(Y1
| Xm) varies with Xm’s values,

then joint distribution P(Y0,Y1
| Xm) is also changeable

depending on Xm’s values, and some functionals of the joint
distribution depend on Xm. This fact can be easily proved
by taking its contraposition, as shown in Appendix A.

Such an idea enables us to detect feature X in Example 1,
whose values influence the treatment e↵ect variance. This

2Identifying which functionals are a↵ected by each feature’s
values is extremely challenging due to the impossibility of inferring
the joint distribution. One possible solution is to use techniques
for estimating the lower and upper bounds on these functionals
[Chen et al., 2016, Russell, 2021, Shingaki and Kuroki, 2021].
Although such bounds require several additional assumptions, they
have been successfully applied in several fields, including fairness-
aware machine learning [Chikahara et al., 2021].

is because, in this example, the discrepancy between con-
ditional potential outcome distributions P(Y0

| X) and
P(Y1

| X) changes depending on X’s values.

Note, however, that our idea does not always work well. This
is because there are counterexamples where feature Xm’s
values do not a↵ect the discrepancy between conditional
distributions P(Y0

| Xm) and P(Y1
| Xm) but influence joint

distribution P(Y0,Y1
| Xm). We take a counterexample in

Appendix B and present the empirical performances in such
cases in Appendix E.1. Nevertheless, compared with the
existing methods, we can detect a wider variety of features
relevant to treatment e↵ect heterogeneity, which leads to a
better understanding of the underlying causal mechanisms.

3.2 FEATURE IMPORTANCE MEASURE

To express the importance of each feature Xm (m = 1, . . . , d),
we measure the discrepancy between distributions P(Y0

|

Xm) and P(Y1
| Xm) using the MMD [Gretton et al., 2012].

In fact, there are several MMD-based metrics for measuring
the discrepancy between potential outcome distributions
[Bellot and van der Schaar, 2021, Muandet et al., 2021, Park
et al., 2021]. However, these metrics cannot be applied in
our setting because they are not designed for the conditional
distributions conditioned on a single feature; we give details
of this reason in Section 5.

Consequently, we develop an MMD-based metric for con-
ditional distributions P(Y0

| Xm) and P(Y1
| Xm). Let

kY : R⇥R! R be a positive-definite kernel function. Then
the squared MMD between the conditional distributions
conditioned on feature value Xm = x is defined as

D2
m(x) B MMD2(P(Y0

| Xm = x),P(Y1
| Xm = x))

=EY0,Y00 |Xm=X0m=x[kY (Y0,Y00)] + EY1,Y10 |Xm=X0m=x[kY (Y1,Y10)]

� 2EY0,Y1 |Xm=x[kY (Y0,Y1)], (2)

where superscript prime 0 denotes an independent copy
of each random variable, and expectation EY0,Y00 |Xm=X0m=x

is taken with respect to P(Y0,Y00
| Xm = X0m = x); other

expectations are taken in a similar manner. This metric has
the following property: If kY belongs to the class of ker-
nel functions called characteristic kernels [Gretton et al.,
2012], then squared MMD is D2

m(x) = 0 if and only if
P(Y0

| Xm = x) = P(Y1
| Xm = x). Examples of characteris-

tic kernels include the Gaussian kernel; we provide a brief
overview on characteristic kernels in Appendix C.

Based on squared MMD D2
m, we define the features related

to distributional treatment e↵ect heterogeneity as the follow-
ing distributional treatment e↵ect modifiers:

Definition 2. Feature Xm is said to be a distributional treat-
ment e↵ect modifier if there are at least two values of Xm,
xm and x?m (xm , x?m), such that squared MMD D2

m in (2)
takes di↵erent values, i.e., D2

m(xm) , D2
m(x?m).
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In fact, there are several MMD-based metrics for measuring
the discrepancy between potential outcome distributions
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et al., 2021]. However, these metrics cannot be applied in
our setting because they are not designed for the conditional
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Consequently, we develop an MMD-based metric for con-
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| Xm). Let

kY : R⇥R! R be a positive-definite kernel function. Then
the squared MMD between the conditional distributions
conditioned on feature value Xm = x is defined as
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=EY0,Y00 |Xm=X0m=x[kY (Y0,Y00)] + EY1,Y10 |Xm=X0m=x[kY (Y1,Y10)]

� 2EY0,Y1 |Xm=x[kY (Y0,Y1)], (2)

where superscript prime 0 denotes an independent copy
of each random variable, and expectation EY0,Y00 |Xm=X0m=x

is taken with respect to P(Y0,Y00
| Xm = X0m = x); other

expectations are taken in a similar manner. This metric has
the following property: If kY belongs to the class of ker-
nel functions called characteristic kernels [Gretton et al.,
2012], then squared MMD is D2

m(x) = 0 if and only if
P(Y0

| Xm = x) = P(Y1
| Xm = x). Examples of characteris-

tic kernels include the Gaussian kernel; we provide a brief
overview on characteristic kernels in Appendix C.

Based on squared MMD D2
m, we define the features related

to distributional treatment e↵ect heterogeneity as the follow-
ing distributional treatment e↵ect modifiers:

Definition 2. Feature Xm is said to be a distributional treat-
ment e↵ect modifier if there are at least two values of Xm,
xm and x?m (xm , x?m), such that squared MMD D2

m in (2)
takes di↵erent values, i.e., D2

m(xm) , D2
m(x?m).

Using inverse probability weighting (IPW), we reformulate -!$ (#) as In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as

EY1 |Xm=x[Y1]

=EX�m |Xm=x[EY1 |X�m,Xm=x[Y1]]

=EX�m |Xm=x,A=1

"
EY |X�m,Xm=x,A=1

"
P(A = 1)

P(A = 1 | X)
Y
##

=EA,X�m,Y |Xm=x[w1(A,X)Y],

where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):

WCMMD2
Xm=x

BEA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w0(A0,X0)kY (Y,Y 0)]

+EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w1(A,X)w1(A0,X0)kY (Y,Y 0)]

�2EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w1(A0,X0)kY (Y,Y 0)].
(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
Pn

l=1 I(xm,l = x)
wa(ai, xi), (6)

we can estimate the expected values in (5) by
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:

!a,x
i =

1
hXm

kXm (xm,i, x)
Pn

l=1
1

hXm
kXm (xm,l, x)

wa(ai, xi), (8)

where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
0
BBBBB@�
kxm � x?mk2

h2
Xm

1
CCCCCA .

In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
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tion that takes 1 if A = a; otherwise 0. In addition, we make
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted
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called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
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support condition 0 < e(x) < 1 for all x [Rosenbaum and
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ignorability), which requires conditional independence rela-
tion {Y0,Y1
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are pretreatment variables, contain no mediator or collider,
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where X�m B X\Xm denotes the features with Xm removed.
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We can show that this WCMMD equals D2
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Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2
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See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
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Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD
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m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be
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i =
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
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To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):

WCMMD2
Xm=x

BEA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w0(A0,X0)kY (Y,Y 0)]
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(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):
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(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:
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In other words, feature Xm is a distributional treatment e↵ect
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To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:
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To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0
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However, we cannot directly compute them because we have
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, (4)
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called a propensity score, and I(A = a) is an indicator func-
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tion {Y0,Y1
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are pretreatment variables, contain no mediator or collider,
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted
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We can show that this WCMMD equals D2
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:
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where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

To reduce the computation time, we approximate .% with RFFs [3]: 

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
have bD2

m(x)
p
! D2

m(x) as n! 1.

See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
D2

m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [

p
2 cos(�1y + ⇣1), . . . ,

p
2 cos(�ry + ⇣r)]>,

where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as

eD2
m(x) B heµY0 |x,eµY0 |xiRr + heµY1 |x,eµY1 |xiRr

� 2heµY0 |x,eµY1 |xiRr
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where eµY0 |x and eµY1 |x are the following weighted averages
of the r-dimensional random feature vector:
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Using (10), we estimate our feature importance measure as
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
B

BX

b=1

I
⇣
eI(b)

m �
eIm
⌘
. (13)

After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem 1. Suppose that weight !a,x
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x
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i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
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After computing p-values p̂1, . . . , p̂d, we perform multiple
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control such false positives by adjusting the p-values; we
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jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
have bD2

m(x)
p
! D2

m(x) as n! 1.

See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
D2

m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [

p
2 cos(�1y + ⇣1), . . . ,

p
2 cos(�ry + ⇣r)]>,

where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
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⇣
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).
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estimate !a,x
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1 | X) with a regression model (e.g., neural network).
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impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
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of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [
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N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)
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repeating these steps, we obtain an empirical distribution of
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
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m(x) as n! 1.

See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
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m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [
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N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem1.Supposethatweight!a,x
iisgivenas(6)or(8).

ThenundertheassumptionspresentedinAppendixD.2,we
havebD2
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SeeAppendixD.2fortheproof.Inpractice,weneedto
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m(x)in(7)isthatitneedscompu-

tationtimeO(n2)forsamplesizen,implyingthatestimating
D2
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ComputingthisestimatorrequiresO(rn2),whichisfeasible
bysettinghyperparameterrtoamoderatevalue.

3.4FEATURESELECTIONWITHCONDITIONAL
RANDOMIZATIONTEST(CRT)

UsingestimatedmeasureseI1,...,eId,weselectdistributional
treatmente↵ectmodifiers.Toachievethis,weperformmul-
tiplehypothesistestswhereforeachm=1,...,d,wecon-
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Aftercomputingp-valuesp̂1,...,p̂d,weperformmultiple
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controlsuchfalsepositivesbyadjustingthep-values;we
usedBenjamini-Hochber(BH)adjustmentprocedure[Ben-
jaminiandHochberg,1995]inourexperiments.Wesum-
marizeourfeatureselectionframeworkinAlgorithm2.
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See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
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m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
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impractical for large n. To resolve this issue, in what follows,
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To reduce the time of computing estimator bD2
m(x) in (7), we
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Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)
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the test statistic and compute a p-value as
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
have bD2
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m(x) as n! 1.

See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
D2

m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [
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2 cos(�1y + ⇣1), . . . ,
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2 cos(�ry + ⇣r)]>,

where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as
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of the r-dimensional random feature vector:
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
B

BX

b=1

I
⇣
eI(b)

m �
eIm
⌘
. (13)

After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
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at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)
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repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
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Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x
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importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic when null hypothesis H0,m is true. To this end,
we employ a synthetic dummy feature that is unrelated to
treatment e↵ect heterogeneity. To avoid changing joint dis-
tribution P(X), we simulate such a synthetic dummy feature
corresponding to each feature Xm so that the joint distribu-
tion of the dummy feature and other observed features X�m
is equal to P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
B

BX

b=1

I
⇣
eI(b)

m �
eIm
⌘
. (13)

After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).
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p
! D2

m(x) as n! 1.
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(10)
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!0,x
i z(yi); eµY1 |x =
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!1,x
i z(yi).
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is equal to P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
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m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
B

BX

b=1

I
⇣
eI(b)

m �
eIm
⌘
. (13)
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itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
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Figure 1: TPRs (left) and FPRs (right) of each method on synthetic data with sample sizes n = 500, 750, . . . , 2000. Mean
and standard deviation (error bars) over 50 runs with di↵erent datasets are shown.

Under LinMean and NonlinMean, features X1, . . . , X5 influ-
ence the average treatment e↵ect whereas under LinVar and
NonlinVar, they a↵ect the treatment e↵ect variance.

Results: Using these synthetic datasets, we evaluated the
performance of each method. We computed a true positive
rate (TPR) and a false positive rate (FPR), defined as dTP

dT

and dFP
d�dT

, where dT = 5 is the number of truly relevant
features, and dTP and dFP are the number of truly relevant
features that are correctly selected as such and the number
of irrelevant features that are wrongly selected as the rele-
vant ones, respectively. For each method, we performed 50
experiments with di↵erent synthetic datasets generated with
di↵erent random numbers and computed the average and
the standard deviation of TPRs and FPRs over 50 runs.

Figure 1 presents the results on the LinMean, NonlinMean,
LinVar and NonlinVar datasets. With all of them, our method
successfully achieved high TPRs while controlling FPRs
to be close to ↵ = 0.05. Although SI-EM yielded high
TPRs with the LinMean and NonlinMean datasets, since
this method is not designed to detect the features related
to treatment e↵ect variance, it failed to find important fea-
tures from the LinVar and NonlinVar datasets. With Naive,
not only the TPRs but also the FPRs were higher than our
method (especially with the LinMean and LinVar datasets),
indicating that it selected many features; however, many of
these were false positives, which is problematic in practice.

To further illustrate the di↵erence between our method and
Naive, consider how each method approximates the p-value
of each feature Xm (m = 1, . . . , d). Both methods compute

SI-EM
cannot detect 
the features 
related to 
treatment 
effect 
variance

Naive
cannot 
control 
the FPR

Proposed achieves high TPR while controlling FPR 

Synthetic data:

Real-world data: Health record dataset (from NHANES)

the p-value by sampling a synthetic dummy feature that
is irrelevant to treatment e↵ect heterogeneity; however, its
sampling distribution is di↵erent. While our method sam-
ples it from (estimated) conditional distribution P(Xm | X�m)
in the CRT, Naive employs (empirical) marginal distribution
P(Xm) without looking at the values of features X�m. The
latter generation process unnecessarily changes joint distri-
bution P(X): The joint distribution of a synthetic feature and
observed features X�m is greatly di↵erent from that of the
original features X; this di↵erence is much larger than with
our method. Due to such a large change in P(X), Naive failed
to approximate the test statistic’s distribution and yielded
high FPRs. By contrast, by avoiding greatly changing joint
distribution P(X) with the CRT, our method e↵ectively eval-
uated the statistical significance of each feature.

Meanwhile, the use of the CRT requires considerable com-
putation time, as discussed in Section 3.4. To confirm this,
we compared the run time of our method with two baselines:
SI-EM and the variant of our method (Exact), which com-
putes the feature importance measure by Eq. (7) without
any approximation. Regarding our method and Exact, we
evaluated the total run time, including the training time of
the propensity score model and the CVAE. We ran all meth-
ods on a 64-bit CentOS machine with 2.10 GHz Xeon Gold
6130 (x2) CPUs and 256-GB RAM.

Figure 2 shows the run time on the LinMean dataset with
sample sizes n = 500, 750, . . . , 2000. When n = 2000, SI-
EM and our method required 27 and 10, 360 seconds, re-
spectively, thus exhibiting a notable di↵erence. However,
our method needed far less time than Exact, demonstrating
the e↵ectiveness of kernel approximation with RFFs.

In summary, these results show the following findings:

• Our method poses a computational challenge; how-
ever, it successfully discovered the features related to
the average treatment e↵ect and the treatment e↵ect
variance.

• SI-EM does not need much time; however, it failed to
find the features related to the treatment e↵ect variance.

Thus, our proposed feature selection framework has made
a significant step toward discovering the features related to
distributional treatment e↵ect heterogeneity, which, to the
best of our knowledge, is the first attempt in causal inference
studies. A further reduction of computation time is left as
our future work, as described in Section 3.4.

4.3 REAL-WORLD DATA EXPERIMENTS

Data: We used the health records from the National Health
and Nutrition Examination Survey (NHANES).3 Following
Zhao et al. [2022], we collected the records of n = 9677

3https://wwwn.cdc.gov/nchs/nhanes/

Figure 2: Run time comparison among proposed method
(red), SI-EM (blue), and Exact (purple) on LinMean dataset
with sample sizes n = 500, 750, . . . , 2000

Table 2: p-values of features selected by our method from
NHANES dataset: Mean and standard deviation are shown
for all features with mean p-values less than ↵ = 0.05.

Feature Adjusted p-value

Age 0.0075 ± 0.0305
Gender 0.0046 ± 0.0269
Number of cigarettes smoked 0.0 ± 0.0

individuals. Each record contains d = 20 features, such as
age, gender, race, income, and past medical history (e.g.,
asthma, gout, stroke, and heart disease); 3 of them take
continuous values, and the others are discrete.

With this dataset, we investigated which features modify the
e↵ects of obesity on low-grade systemic inflammation by
regarding whether body mass index (BMI) exceeds 25 as
treatment A and serum C-reactive protein (CRP) level as
outcome Y . Discovering such features has important medi-
cal implications because low-grade inflammation increases
the risk of various chronic diseases, such as cancers and
cardiovascular disease [Rodríguez-Hernández et al., 2013].

Since the truly relevant features are unknown, we cannot
evaluate the TPRs and FPRs. For this reason, we compared
the features selected by our method and SI-EM. Since our
method is founded on the randomized algorithm (i.e., CRT),
we computed the mean of the adjusted p-values over 50 runs
and used this mean p-value to select the features.

Results: Table 2 presents the adjusted p-values for all
features that are selected by our proposed method.

Both our method and SI-EM successfully selected age and
gender, which were reported as important in the previous
medical studies [Visser et al., 1999]. Although SI-EM se-
lected only these two features, our method concluded that
the number of cigarettes smoked is also statistically signifi-
cant. Selecting this feature is interesting and seems reason-
able because the synergistic e↵ect of obesity and smoking
on systemic inflammation has been reported in previous
studies [Ólafsdóttir et al., 2005].

Not detected 
by SI-EM

Treatment 3: obesity
Features 4: e.g., age, gender, race, past medical history (e.g., asthma, stroke)

Outcome ): low-grade systemic inflammation

https://arxiv.org/abs/2206.00516
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treatment effect heterogeneity

𝑋! 𝑋" 𝑋#
𝑝 = 0.002 𝑝 = 0.019 𝑝 = 0.035



Feature Selection for Discovering 
Distributional Treatment Effect Modifiers

Yoichi Chikahara1,2, Makoto Yamada2, Hisashi Kashima2 1 NTT, 2 Kyoto University

Goal: Discover a wider variety of treatment effect modifiers
Proposal: Detect features related to distributional treatment effects

1. Feature importance measure

2. Its efficient estimator

3. Feature selection algorithm

P(𝑌*|𝑥)
P(𝑌+|𝑥) Kernel MMD

Feature Selection for Discovering 
Distributional Treatment Effect Modifiers

Motivation: Elucidate why treatment effects are different

Proposed method

[1] Qingyuan Zhao, Dylan S. Small, and Ashkan Ertefaie. “Selective inference for 
effect modification via the lasso”. Journal of Royal Statistical Society: Series B 
(Statistical Methodology), 84(2):382–413, 2022. 

[2] Arthur Gretton, Karsten M. Borgwardt, Malte J Rasch, Bernhard Schölkopf, and 
Alexander Smola. “A kernel two-sample test”. JMLR, 13(1):723–773, 2012. 

[3] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel 
machines”. In NeurIPS, volume 3, page 5, 2007. 

[4] Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. “Panning for 
gold: ‘Model-X’knockoffs for high dimensional controlled variable selection”.
Journal of Royal Statistical Society: Series B (Statistical Methodology), 80 (3):551–577, 
2018. 

Yoichi Chikahara1,2, Makoto Yamada2, Hisashi Kashima2

Weaknesses of mean-based approaches

1 NTT 2 Kyoto University

1. Detecting distributional treatment effect modifiers

2. Estimating importance measure with IPW and RFFs

3. Multiple tests with conditional randomization test (CRT)

Experimental results
We compare our method with the two baselines: 
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Many existing methods use a complex ML model to accurately   
estimate heterogeneous treatment effects across individuals.
However, they offer no answer to the following question:

Different individuals have different treatment effects. Why?
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Traditional mean-based approaches

To answer this question, we consider the feature selection problem:
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Male 80 y.o. 0 174 ? 174 ?

Female 64 y.o. 1 135 135 ? ?

Female 32 y.o. 1 110 110 ? ?

Input: Observations of features !, 
treatment ", and outcome #
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related to treatment effect 

heterogeneity

• We experimentally show that our method successfully
finds the features related to treatment e↵ect heterogene-
ity and outperforms the existing mean-based method.

2 PRELIMINARIES

2.1 PROBLEM SETUP

Suppose that we have a sample of n individuals D =
{(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y) for i = 1, . . . , n. Here A 2

{0, 1} is a binary treatment (A = 1 if an individual is treated;
otherwise, A = 0), X = [X1, . . . , Xd]> is d-dimensional
features (a.k.a. covariates), where each feature Xm 2 X

(m = 1, . . . , d) takes either discrete or continuous values,
and Y 2 R is a continuous-valued outcome.1 Here we as-
sume that (1) features X are measured before applying the
treatment and observing outcome Y (i.e., features X are
pretreatment variables and not mediators or colliders [Elw-
ert and Winship, 2014]) and that (2) features X contain all
confounders, i.e., the variables that a↵ect treatment A and
outcome Y . Note that these assumptions are standard in the
existing work [Imai and Ratkovic, 2013, Zhao et al., 2022].

Given sample D, we solve the problem of selecting the
features in X that influence the e↵ect of treatment A on out-
come Y . In this problem, which features should be selected
depends on the measurement scale of the treatment e↵ect
[Hernán and Robins, 2020, Chapter 4]. There are two mea-
surement scales: additive scale Y1

� Y0 and multiplicative
scale Y1/Y0, where Y0 and Y1 are random variables that are
referred to as potential outcomes, each of which represents
the outcome when A = 0 and when A = 1, respectively [Ru-
bin, 1974]. In this study, we define the treatment e↵ect for
each individual on an additive scale as Y1

� Y0 because this
scale is standard and widely used in numerous applications
[Lee et al., 2018, Schochet et al., 2014, Taddy et al., 2016].

Unfortunately, we cannot observe treatment e↵ect Y1
� Y0.

This is because we cannot jointly observe two potential
outcomes Y0 and Y1; we only observe either Y0 or Y1, which
is obtained as Y = (1 � A)Y0 + AY1 (A 2 {0, 1}). For this
reason, existing methods use the average treatment e↵ect
across individuals, which can be estimated from the data.

2.2 MEAN-BASED APPROACHES

Many existing methods [Tian et al., 2014, Zhao et al., 2022]
seek the features whose attributes a↵ect the degree of the
average treatment e↵ect called CATE, which is defined for
each feature’s attribute, Xm = x (m = 1, . . . , d), as follows:

Tm(x) B E[Y1
� Y0

| Xm = x]

= E[Y1
| Xm = x] � E[Y0

| Xm = x]. (1)

1We assume Y 2 R to use the kernel approximation technique
[Rahimi et al., 2007], which is described in Section 3.3.

Table 1: Joint probability tables of potential outcomes in
Example 1. Nonzero probabilities are shown in bold. Total
expresses marginal potential outcome probabilities.

P(Y0,Y1
| X = 0)

Y0
Y1

-1 0 1 Total

-1 0 0 0 0
0 0.5 0 0.5 1.0
1 0 0 0 0

Total 0.5 0 0.5 1.0

P(Y0,Y1
| X = 1)

Y0
Y1

-1 0 1 Total

-1 0 0 0 0
0 0 1.0 0 1.0
1 0 0 0 0

Total 0 1.0 0 1.0

CATE Tm(x) is an average treatment e↵ect over the individ-
uals who share an identical attribute, Xm = x. Note that this
CATE is di↵erent from the one conditioned on all features
X, which is an inference target of the recent causal inference
methods [Chang and Dy, 2017, Hassanpour and Greiner,
2019, Hill, 2011, Künzel et al., 2019, Nie and Wager, 2021,
Shalit et al., 2017, Yoon et al., 2018].

Using CATE Tm (m = 1, . . . , d), the features that influence
the degree of the average treatment e↵ect are defined as the
following treatment e↵ect modifiers:

Definition 1 (Rothman et al. [2008]). Feature Xm is said to
be a treatment e↵ect modifier if there are at least two values
of Xm, xm and x?m (xm , x?m), such that CATE Tm in (1) takes
di↵erent values, i.e., Tm(xm) , Tm(x?m).

Definition 1 states that feature Xm is a treatment e↵ect mod-
ifier if CATE Tm(x) is not a constant with respect to value
Xm = x. Roughly speaking, when we group individuals by
their Xm’s values and compute the average treatment e↵ect
in each group of the individuals, if there are at least two
groups with di↵erent averages, then feature Xm is a treat-
ment e↵ect modifier [VanderWeele, 2009].

The existing methods seek such treatment e↵ect modifiers
by fitting a regression model that is linear in treatment A
with a sparse regularizer [Imai and Ratkovic, 2013, Sechidis
et al., 2021, Tian et al., 2014, Zhao et al., 2022].

2.3 WEAKNESS OF MEAN-BASED APPROACHES

Since the above mean-based methods rely on the average
treatment e↵ect, they cannot detect the features whose at-
tributes do not influence the average treatment e↵ect but do
a↵ect other functionals of the joint distribution of potential
outcomes, such as the covariance between potential out-
comes and the treatment e↵ect variance [Russell, 2021]. To
illustrate such a feature, consider the following toy example:

Example 1. Let Y0,Y1
2 {�1, 0, 1} ⇢ R be the potential

outcomes and let X 2 {0, 1} be a binary feature. Suppose
that joint distribution P(Y0,Y1

| X) is given as Table 1. Then
feature X’s values are irrelevant to the average treatment

Using the CATE conditioned on a single feature (i.e., the average 
treatment effect across individuals with identical attribute !! = #):

the existing methods (e.g., [1]) seek treatment effect modifiers:

Example:
Mean-based methods may overlook important features 
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• We experimentally show that our method successfully
finds the features related to treatment e↵ect heterogene-
ity and outperforms the existing mean-based method.
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ifier if CATE Tm(x) is not a constant with respect to value
Xm = x. Roughly speaking, when we group individuals by
their Xm’s values and compute the average treatment e↵ect
in each group of the individuals, if there are at least two
groups with di↵erent averages, then feature Xm is a treat-
ment e↵ect modifier [VanderWeele, 2009].

The existing methods seek such treatment e↵ect modifiers
by fitting a regression model that is linear in treatment A
with a sparse regularizer [Imai and Ratkovic, 2013, Sechidis
et al., 2021, Tian et al., 2014, Zhao et al., 2022].

2.3 WEAKNESS OF MEAN-BASED APPROACHES

Since the above mean-based methods rely on the average
treatment e↵ect, they cannot detect the features whose at-
tributes do not influence the average treatment e↵ect but do
a↵ect other functionals of the joint distribution of potential
outcomes, such as the covariance between potential out-
comes and the treatment e↵ect variance [Russell, 2021]. To
illustrate such a feature, consider the following toy example:

Example 1. Let Y0,Y1
2 {�1, 0, 1} ⇢ R be the potential

outcomes and let X 2 {0, 1} be a binary feature. Suppose
that joint distribution P(Y0,Y1

| X) is given as Table 1. Then
feature X’s values are irrelevant to the average treatment
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Contributions
1. Novel feature importance measure
2. Its computationally efficient estimator
3. Selection algorithm that controls Type I error

• We experimentally show that our method successfully
finds the features related to treatment e↵ect heterogene-
ity and outperforms the existing mean-based method.

2 PRELIMINARIES

2.1 PROBLEM SETUP

Suppose that we have a sample of n individuals D =
{(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y) for i = 1, . . . , n. Here A 2

{0, 1} is a binary treatment (A = 1 if an individual is treated;
otherwise, A = 0), X = [X1, . . . , Xd]> is d-dimensional
features (a.k.a. covariates), where each feature Xm 2 X

(m = 1, . . . , d) takes either discrete or continuous values,
and Y 2 R is a continuous-valued outcome.1 Here we as-
sume that (1) features X are measured before applying the
treatment and observing outcome Y (i.e., features X are
pretreatment variables and not mediators or colliders [Elw-
ert and Winship, 2014]) and that (2) features X contain all
confounders, i.e., the variables that a↵ect treatment A and
outcome Y . Note that these assumptions are standard in the
existing work [Imai and Ratkovic, 2013, Zhao et al., 2022].

Given sample D, we solve the problem of selecting the
features in X that influence the e↵ect of treatment A on out-
come Y . In this problem, which features should be selected
depends on the measurement scale of the treatment e↵ect
[Hernán and Robins, 2020, Chapter 4]. There are two mea-
surement scales: additive scale Y1

� Y0 and multiplicative
scale Y1/Y0, where Y0 and Y1 are random variables that are
referred to as potential outcomes, each of which represents
the outcome when A = 0 and when A = 1, respectively [Ru-
bin, 1974]. In this study, we define the treatment e↵ect for
each individual on an additive scale as Y1

� Y0 because this
scale is standard and widely used in numerous applications
[Lee et al., 2018, Schochet et al., 2014, Taddy et al., 2016].

Unfortunately, we cannot observe treatment e↵ect Y1
� Y0.

This is because we cannot jointly observe two potential
outcomes Y0 and Y1; we only observe either Y0 or Y1, which
is obtained as Y = (1 � A)Y0 + AY1 (A 2 {0, 1}). For this
reason, existing methods use the average treatment e↵ect
across individuals, which can be estimated from the data.

2.2 MEAN-BASED APPROACHES

Many existing methods [Tian et al., 2014, Zhao et al., 2022]
seek the features whose attributes a↵ect the degree of the
average treatment e↵ect called CATE, which is defined for
each feature’s attribute, Xm = x (m = 1, . . . , d), as follows:

Tm(x) B E[Y1
� Y0

| Xm = x]

= E[Y1
| Xm = x] � E[Y0

| Xm = x]. (1)

1We assume Y 2 R to use the kernel approximation technique
[Rahimi et al., 2007], which is described in Section 3.3.

Table 1: Joint probability tables of potential outcomes in
Example 1. Nonzero probabilities are shown in bold. Total
expresses marginal potential outcome probabilities.

P(Y0,Y1
| X = 0)

Y0
Y1

-1 0 1 Total

-1 0 0 0 0
0 0.5 0 0.5 1.0
1 0 0 0 0

Total 0.5 0 0.5 1.0

P(Y0,Y1
| X = 1)

Y0
Y1

-1 0 1 Total

-1 0 0 0 0
0 0 1.0 0 1.0
1 0 0 0 0

Total 0 1.0 0 1.0

CATE Tm(x) is an average treatment e↵ect over the individ-
uals who share an identical attribute, Xm = x. Note that this
CATE is di↵erent from the one conditioned on all features
X, which is an inference target of the recent causal inference
methods [Chang and Dy, 2017, Hassanpour and Greiner,
2019, Hill, 2011, Künzel et al., 2019, Nie and Wager, 2021,
Shalit et al., 2017, Yoon et al., 2018].

Using CATE Tm (m = 1, . . . , d), the features that influence
the degree of the average treatment e↵ect are defined as the
following treatment e↵ect modifiers:

Definition 1 (Rothman et al. [2008]). Feature Xm is said to
be a treatment e↵ect modifier if there are at least two values
of Xm, xm and x?m (xm , x?m), such that CATE Tm in (1) takes
di↵erent values, i.e., Tm(xm) , Tm(x?m).

Definition 1 states that feature Xm is a treatment e↵ect mod-
ifier if CATE Tm(x) is not a constant with respect to value
Xm = x. Roughly speaking, when we group individuals by
their Xm’s values and compute the average treatment e↵ect
in each group of the individuals, if there are at least two
groups with di↵erent averages, then feature Xm is a treat-
ment e↵ect modifier [VanderWeele, 2009].

The existing methods seek such treatment e↵ect modifiers
by fitting a regression model that is linear in treatment A
with a sparse regularizer [Imai and Ratkovic, 2013, Sechidis
et al., 2021, Tian et al., 2014, Zhao et al., 2022].

2.3 WEAKNESS OF MEAN-BASED APPROACHES

Since the above mean-based methods rely on the average
treatment e↵ect, they cannot detect the features whose at-
tributes do not influence the average treatment e↵ect but do
a↵ect other functionals of the joint distribution of potential
outcomes, such as the covariance between potential out-
comes and the treatment e↵ect variance [Russell, 2021]. To
illustrate such a feature, consider the following toy example:

Example 1. Let Y0,Y1
2 {�1, 0, 1} ⇢ R be the potential

outcomes and let X 2 {0, 1} be a binary feature. Suppose
that joint distribution P(Y0,Y1

| X) is given as Table 1. Then
feature X’s values are irrelevant to the average treatment
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e↵ect and the covariance between potential outcomes but
relevant to the treatment e↵ect variance:

E[Y1
� Y0

| X = 0] = E[Y1
� Y0

| X = 1] = 0

Cov[Y0,Y1
| X = 0] = Cov[Y0,Y1

| X = 1] = 0

Var[Y1
� Y0

| X = 0] = 1; Var[Y1
� Y0

| X = 1] = 0.

Joint distribution P(Y0,Y1
| X) presented in Table 1 shows

that feature X is related to a di↵erence in treatment e↵ects:
While no individual with attribute X = 1 receives any treat-
ment e↵ect, those with X = 0 get positive or negative e↵ects.
However, since the CATE values do not depend on X, the
existing mean-based methods will incorrectly conclude that
feature X is unrelated to the treatment e↵ect heterogeneity.
This implies that using CATE is insu�cient to capture such
distributional treatment e↵ect heterogeneity and might lead
to overlooking important features.

3 PROPOSED METHOD

3.1 DETECTING DISTRIBUTIONAL
HETEROGENEITY

We propose a feature selection framework for discovering
the features related to distributional treatment e↵ect het-
erogeneity. To find such features, we consider the prob-
lem of determining whether the values of each feature Xm
(m = 1, . . . , d) influence the functionals of the joint distri-
bution of potential outcomes P(Y0,Y1

| Xm), such as the
average treatment e↵ect, the treatment e↵ect variance, and
the covariance between potential outcomes. 2 This problem
is challenging because we cannot infer joint distribution
P(Y0,Y1

| Xm), since we can never jointly observe potential
outcomes Y0 and Y1 as described in Section 2.1.

To overcome this challenge, we propose measuring the im-
portance of each feature Xm (m = 1, . . . , d) by quantifying
how greatly Xm’s values influence the discrepancy between
conditional distributions P(Y0

| Xm) and P(Y1
| Xm). This

idea is motivated by the following fact: if the discrepancy
between P(Y0

| Xm) and P(Y1
| Xm) varies with Xm’s values,

then joint distribution P(Y0,Y1
| Xm) is also changeable

depending on Xm’s values, and some functionals of the joint
distribution depend on Xm. This fact can be easily proved
by taking its contraposition, as shown in Appendix A.

Such an idea enables us to detect feature X in Example 1,
whose values influence the treatment e↵ect variance. This

2Identifying which functionals are a↵ected by each feature’s
values is extremely challenging due to the impossibility of inferring
the joint distribution. One possible solution is to use techniques
for estimating the lower and upper bounds on these functionals
[Chen et al., 2016, Russell, 2021, Shingaki and Kuroki, 2021].
Although such bounds require several additional assumptions, they
have been successfully applied in several fields, including fairness-
aware machine learning [Chikahara et al., 2021].

is because, in this example, the discrepancy between con-
ditional potential outcome distributions P(Y0

| X) and
P(Y1

| X) changes depending on X’s values.

Note, however, that our idea does not always work well. This
is because there are counterexamples where feature Xm’s
values do not a↵ect the discrepancy between conditional
distributions P(Y0

| Xm) and P(Y1
| Xm) but influence joint

distribution P(Y0,Y1
| Xm). We take a counterexample in

Appendix B and present the empirical performances in such
cases in Appendix E.1. Nevertheless, compared with the
existing methods, we can detect a wider variety of features
relevant to treatment e↵ect heterogeneity, which leads to a
better understanding of the underlying causal mechanisms.

3.2 FEATURE IMPORTANCE MEASURE

To express the importance of each feature Xm (m = 1, . . . , d),
we measure the discrepancy between distributions P(Y0

|

Xm) and P(Y1
| Xm) using the MMD [Gretton et al., 2012].

In fact, there are several MMD-based metrics for measuring
the discrepancy between potential outcome distributions
[Bellot and van der Schaar, 2021, Muandet et al., 2021, Park
et al., 2021]. However, these metrics cannot be applied in
our setting because they are not designed for the conditional
distributions conditioned on a single feature; we give details
of this reason in Section 5.

Consequently, we develop an MMD-based metric for con-
ditional distributions P(Y0

| Xm) and P(Y1
| Xm). Let

kY : R⇥R! R be a positive-definite kernel function. Then
the squared MMD between the conditional distributions
conditioned on feature value Xm = x is defined as

D2
m(x) B MMD2(P(Y0

| Xm = x),P(Y1
| Xm = x))

=EY0,Y00 |Xm=X0m=x[kY (Y0,Y00)] + EY1,Y10 |Xm=X0m=x[kY (Y1,Y10)]

� 2EY0,Y1 |Xm=x[kY (Y0,Y1)], (2)

where superscript prime 0 denotes an independent copy
of each random variable, and expectation EY0,Y00 |Xm=X0m=x

is taken with respect to P(Y0,Y00
| Xm = X0m = x); other

expectations are taken in a similar manner. This metric has
the following property: If kY belongs to the class of ker-
nel functions called characteristic kernels [Gretton et al.,
2012], then squared MMD is D2

m(x) = 0 if and only if
P(Y0

| Xm = x) = P(Y1
| Xm = x). Examples of characteris-

tic kernels include the Gaussian kernel; we provide a brief
overview on characteristic kernels in Appendix C.

Based on squared MMD D2
m, we define the features related

to distributional treatment e↵ect heterogeneity as the follow-
ing distributional treatment e↵ect modifiers:

Definition 2. Feature Xm is said to be a distributional treat-
ment e↵ect modifier if there are at least two values of Xm,
xm and x?m (xm , x?m), such that squared MMD D2

m in (2)
takes di↵erent values, i.e., D2

m(xm) , D2
m(x?m).

To detect the MMD value variation, we formulate our feature 
importance measure as the variance:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribu-
tion called a propensity score, and I(A = a) is an indicator
function that takes 1 if A = a; otherwise 0. In addition, we
make the two standard assumptions: conditional ignorability
(a.k.a. strong ignorability), which requires conditional in-
dependence relation {Y0,Y1

}?? A | X, and positivity, which
imposes support condition 0 < e(x) < 1 for all x [Rosen-
baum and Rubin, 1983]; the former is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as

EY1 |Xm=x[Y1]

=EX�m |Xm=x[EY1 |X�m,Xm=x[Y1]]

=EX�m |Xm=x,A=1

"
EY |X�m,Xm=x,A=1

"
P(A = 1)

P(A = 1 | X)
Y
##

=EA,X�m,Y |Xm=x[w1(A,X)Y],

where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):

WCMMD2
Xm=x

BEA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w0(A0,X0)kY (Y,Y 0)]

+EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w1(A,X)w1(A0,X0)kY (Y,Y 0)]

�2EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w1(A0,X0)kY (Y,Y 0)].
(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer D2
m(x) with estimator (5), we estimate the expected

values taken over the conditional distribution conditioned
on Xm = x using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
Pn

l=1 I(xm,l = x)
wa(ai, xi), (6)

we can estimate the expected values in (5) by

bD2
m(x) B

nX

i=1

nX

j=1

⇣
!0,x

i !
0,x
j + !

1,x
i !

1,x
j

⌘
kY (yi, y j)

� 2
nX

i=1

nX

j=1

!0,x
i !

1,x
j kY (yi, y j).

(7)

For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:

!a,x
i =

1
hXm

kXm (xm,i, x)
Pn

l=1
1

hXm
kXm (xm,l, x)

wa(ai, xi), (8)

where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
0
BBBBB@�
kxm � x?mk2

h2
Xm

1
CCCCCA .

In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

e↵ect and the covariance between potential outcomes but
relevant to the treatment e↵ect variance:

E[Y1
� Y0

| X = 0] = E[Y1
� Y0

| X = 1] = 0

Cov[Y0,Y1
| X = 0] = Cov[Y0,Y1

| X = 1] = 0

Var[Y1
� Y0

| X = 0] = 1; Var[Y1
� Y0

| X = 1] = 0.

Joint distribution P(Y0,Y1
| X) presented in Table 1 shows

that feature X is related to a di↵erence in treatment e↵ects:
While no individual with attribute X = 1 receives any treat-
ment e↵ect, those with X = 0 get positive or negative e↵ects.
However, since the CATE values do not depend on X, the
existing mean-based methods will incorrectly conclude that
feature X is unrelated to the treatment e↵ect heterogeneity.
This implies that using CATE is insu�cient to capture such
distributional treatment e↵ect heterogeneity and might lead
to overlooking important features.

3 PROPOSED METHOD

3.1 DETECTING DISTRIBUTIONAL
HETEROGENEITY

We propose a feature selection framework for discovering
the features related to distributional treatment e↵ect het-
erogeneity. To find such features, we consider the prob-
lem of determining whether the values of each feature Xm
(m = 1, . . . , d) influence the functionals of the joint distri-
bution of potential outcomes P(Y0,Y1

| Xm), such as the
average treatment e↵ect, the treatment e↵ect variance, and
the covariance between potential outcomes. 2 This problem
is challenging because we cannot infer joint distribution
P(Y0,Y1

| Xm), since we can never jointly observe potential
outcomes Y0 and Y1 as described in Section 2.1.

To overcome this challenge, we propose measuring the im-
portance of each feature Xm (m = 1, . . . , d) by quantifying
how greatly Xm’s values influence the discrepancy between
conditional distributions P(Y0

| Xm) and P(Y1
| Xm). This

idea is motivated by the following fact: if the discrepancy
between P(Y0

| Xm) and P(Y1
| Xm) varies with Xm’s values,

then joint distribution P(Y0,Y1
| Xm) is also changeable

depending on Xm’s values, and some functionals of the joint
distribution depend on Xm. This fact can be easily proved
by taking its contraposition, as shown in Appendix A.

Such an idea enables us to detect feature X in Example 1,
whose values influence the treatment e↵ect variance. This

2Identifying which functionals are a↵ected by each feature’s
values is extremely challenging due to the impossibility of inferring
the joint distribution. One possible solution is to use techniques
for estimating the lower and upper bounds on these functionals
[Chen et al., 2016, Russell, 2021, Shingaki and Kuroki, 2021].
Although such bounds require several additional assumptions, they
have been successfully applied in several fields, including fairness-
aware machine learning [Chikahara et al., 2021].

is because, in this example, the discrepancy between con-
ditional potential outcome distributions P(Y0

| X) and
P(Y1

| X) changes depending on X’s values.

Note, however, that our idea does not always work well. This
is because there are counterexamples where feature Xm’s
values do not a↵ect the discrepancy between conditional
distributions P(Y0

| Xm) and P(Y1
| Xm) but influence joint

distribution P(Y0,Y1
| Xm). We take a counterexample in

Appendix B and present the empirical performances in such
cases in Appendix E.1. Nevertheless, compared with the
existing methods, we can detect a wider variety of features
relevant to treatment e↵ect heterogeneity, which leads to a
better understanding of the underlying causal mechanisms.

3.2 FEATURE IMPORTANCE MEASURE

To express the importance of each feature Xm (m = 1, . . . , d),
we measure the discrepancy between distributions P(Y0

|

Xm) and P(Y1
| Xm) using the MMD [Gretton et al., 2012].

In fact, there are several MMD-based metrics for measuring
the discrepancy between potential outcome distributions
[Bellot and van der Schaar, 2021, Muandet et al., 2021, Park
et al., 2021]. However, these metrics cannot be applied in
our setting because they are not designed for the conditional
distributions conditioned on a single feature; we give details
of this reason in Section 5.

Consequently, we develop an MMD-based metric for con-
ditional distributions P(Y0

| Xm) and P(Y1
| Xm). Let

kY : R⇥R! R be a positive-definite kernel function. Then
the squared MMD between the conditional distributions
conditioned on feature value Xm = x is defined as

D2
m(x) B MMD2(P(Y0

| Xm = x),P(Y1
| Xm = x))

=EY0,Y00 |Xm=X0m=x[kY (Y0,Y00)] + EY1,Y10 |Xm=X0m=x[kY (Y1,Y10)]

� 2EY0,Y1 |Xm=x[kY (Y0,Y1)], (2)

where superscript prime 0 denotes an independent copy
of each random variable, and expectation EY0,Y00 |Xm=X0m=x

is taken with respect to P(Y0,Y00
| Xm = X0m = x); other

expectations are taken in a similar manner. This metric has
the following property: If kY belongs to the class of ker-
nel functions called characteristic kernels [Gretton et al.,
2012], then squared MMD is D2

m(x) = 0 if and only if
P(Y0

| Xm = x) = P(Y1
| Xm = x). Examples of characteris-

tic kernels include the Gaussian kernel; we provide a brief
overview on characteristic kernels in Appendix C.

Based on squared MMD D2
m, we define the features related

to distributional treatment e↵ect heterogeneity as the follow-
ing distributional treatment e↵ect modifiers:

Definition 2. Feature Xm is said to be a distributional treat-
ment e↵ect modifier if there are at least two values of Xm,
xm and x?m (xm , x?m), such that squared MMD D2

m in (2)
takes di↵erent values, i.e., D2

m(xm) , D2
m(x?m).
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Joint distribution P(Y0,Y1
| X) presented in Table 1 shows

that feature X is related to a di↵erence in treatment e↵ects:
While no individual with attribute X = 1 receives any treat-
ment e↵ect, those with X = 0 get positive or negative e↵ects.
However, since the CATE values do not depend on X, the
existing mean-based methods will incorrectly conclude that
feature X is unrelated to the treatment e↵ect heterogeneity.
This implies that using CATE is insu�cient to capture such
distributional treatment e↵ect heterogeneity and might lead
to overlooking important features.

3 PROPOSED METHOD

3.1 DETECTING DISTRIBUTIONAL
HETEROGENEITY

We propose a feature selection framework for discovering
the features related to distributional treatment e↵ect het-
erogeneity. To find such features, we consider the prob-
lem of determining whether the values of each feature Xm
(m = 1, . . . , d) influence the functionals of the joint distri-
bution of potential outcomes P(Y0,Y1

| Xm), such as the
average treatment e↵ect, the treatment e↵ect variance, and
the covariance between potential outcomes. 2 This problem
is challenging because we cannot infer joint distribution
P(Y0,Y1

| Xm), since we can never jointly observe potential
outcomes Y0 and Y1 as described in Section 2.1.

To overcome this challenge, we propose measuring the im-
portance of each feature Xm (m = 1, . . . , d) by quantifying
how greatly Xm’s values influence the discrepancy between
conditional distributions P(Y0

| Xm) and P(Y1
| Xm). This

idea is motivated by the following fact: if the discrepancy
between P(Y0
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| Xm) varies with Xm’s values,

then joint distribution P(Y0,Y1
| Xm) is also changeable

depending on Xm’s values, and some functionals of the joint
distribution depend on Xm. This fact can be easily proved
by taking its contraposition, as shown in Appendix A.

Such an idea enables us to detect feature X in Example 1,
whose values influence the treatment e↵ect variance. This
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where superscript prime 0 denotes an independent copy
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| Xm = X0m = x); other
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Based on squared MMD D2
m, we define the features related

to distributional treatment e↵ect heterogeneity as the follow-
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Using inverse probability weighting (IPW), we reformulate -!$ (#) as In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as

EY1 |Xm=x[Y1]
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"
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"
P(A = 1)

P(A = 1 | X)
Y
##

=EA,X�m,Y |Xm=x[w1(A,X)Y],

where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):
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(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:

!a,x
i =

1
hXm

kXm (xm,i, x)
Pn

l=1
1

hXm
kXm (xm,l, x)
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where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
0
BBBBB@�
kxm � x?mk2

h2
Xm

1
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In both cases where !a,x
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show the consistency of estimator bD2
m(x), i.e., convergence
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In other words, feature Xm is a distributional treatment e↵ect
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| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:
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m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2
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Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
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Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD
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mate the conditional expected values conditioned on Xm = x
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)
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m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
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| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
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To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted
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same property with D2
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Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
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mate the conditional expected values conditioned on Xm = x
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⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
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function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:

!a,x
i =

1
hXm

kXm (xm,i, x)
Pn

l=1
1

hXm
kXm (xm,l, x)

wa(ai, xi), (8)

where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
0
BBBBB@�
kxm � x?mk2

h2
Xm

1
CCCCCA .
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to the true value in the limit of infinite sample size:

Empirical estimator:  
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Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as

EY1 |Xm=x[Y1]

=EX�m |Xm=x[EY1 |X�m,Xm=x[Y1]]

=EX�m |Xm=x,A=1

"
EY |X�m,Xm=x,A=1

"
P(A = 1)

P(A = 1 | X)
Y
##

=EA,X�m,Y |Xm=x[w1(A,X)Y],

where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):

WCMMD2
Xm=x

BEA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w0(A0,X0)kY (Y,Y 0)]

+EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w1(A,X)w1(A0,X0)kY (Y,Y 0)]

�2EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w1(A0,X0)kY (Y,Y 0)].
(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
Pn

l=1 I(xm,l = x)
wa(ai, xi), (6)

we can estimate the expected values in (5) by

bD2
m(x) B

nX

i=1

nX

j=1

⇣
!0,x

i !
0,x
j + !

1,x
i !

1,x
j

⌘
kY (yi, y j)

� 2
nX

i=1

nX

j=1

!0,x
i !

1,x
j kY (yi, y j).

(7)

For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:

!a,x
i =

1
hXm

kXm (xm,i, x)
Pn

l=1
1

hXm
kXm (xm,l, x)

wa(ai, xi), (8)

where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
0
BBBBB@�
kxm � x?mk2

h2
Xm

1
CCCCCA .

In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as

EY1 |Xm=x[Y1]

=EX�m |Xm=x[EY1 |X�m,Xm=x[Y1]]

=EX�m |Xm=x,A=1

"
EY |X�m,Xm=x,A=1

"
P(A = 1)

P(A = 1 | X)
Y
##

=EA,X�m,Y |Xm=x[w1(A,X)Y],

where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):

WCMMD2
Xm=x

BEA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w0(A0,X0)kY (Y,Y 0)]

+EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w1(A,X)w1(A0,X0)kY (Y,Y 0)]

�2EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w1(A0,X0)kY (Y,Y 0)].
(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
Pn

l=1 I(xm,l = x)
wa(ai, xi), (6)

we can estimate the expected values in (5) by
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:

!a,x
i =

1
hXm

kXm (xm,i, x)
Pn

l=1
1

hXm
kXm (xm,l, x)

wa(ai, xi), (8)

where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
0
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
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| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):
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Xm=x
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(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
Pn

l=1 I(xm,l = x)
wa(ai, xi), (6)

we can estimate the expected values in (5) by
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:
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where the similarity between Xm’s values is measured by
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we formulate kXm as the Gaussian kernel:
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

How can we detect distributional heterogeneity? 

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as

EY1 |Xm=x[Y1]

=EX�m |Xm=x[EY1 |X�m,Xm=x[Y1]]

=EX�m |Xm=x,A=1

"
EY |X�m,Xm=x,A=1

"
P(A = 1)

P(A = 1 | X)
Y
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=EA,X�m,Y |Xm=x[w1(A,X)Y],

where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted

conditional MMD (WCMMD):

WCMMD2
Xm=x

BEA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w0(A0,X0)kY (Y,Y 0)]

+EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w1(A,X)w1(A0,X0)kY (Y,Y 0)]

�2EA,A0,X�m,X0�m,Y,Y 0 |Xm=X0m=x[w0(A,X)w1(A0,X0)kY (Y,Y 0)].
(5)

We can show that this WCMMD equals D2
m(x) under condi-

tional ignorability and positivity assumptions:

Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
Pn

l=1 I(xm,l = x)
wa(ai, xi), (6)

we can estimate the expected values in (5) by
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:
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where the similarity between Xm’s values is measured by
kernel function kXm with bandwidth hXm ; in our experiments,
we formulate kXm as the Gaussian kernel:

kXm (xm, x?m) = exp
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

If .$ is discrete, ; otherwise, 

In other words, feature Xm is a distributional treatment e↵ect
modifier if the squared MMD between P(Y0

| Xm) and
P(Y1

| Xm) varies depending on Xm’s values.

To detect such a variation, we formulate the importance of
each feature Xm as the variance of the squared MMD:

Im B Var[D2
m(Xm)]. (3)

3.3 ESTIMATOR OF FEATURE IMPORTANCE

To estimate feature importance measure Im in (3), we need
to compute the expected values in (2) whose expectations
can be represented as those over conditional distributions
P(Y0

| Xm = x) and P(Y1
| Xm = x).

However, we cannot directly compute them because we have
no access to the observations from these conditional distri-
butions. To overcome this di�culty, we develop a weighted
estimator that can be computed from the observed data.

3.3.1 Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in (2), we develop an esti-

mator of the expected value over conditional distribution
P(Ya

| Xm = x) (a 2 {0, 1}) using a weighting-based estima-
tion technique called importance sampling.

To derive such an estimator, we use weight functions called
inverse probability weights [Rosenbaum and Rubin, 1983]:

w0(A,X) =
I(A = 0)
1 � e(X)

, w1(A,X) =
I(A = 1)

e(X)
, (4)

where e(X) B P(A = 1 | X) is the conditional distribution
called a propensity score, and I(A = a) is an indicator func-
tion that takes 1 if A = a; otherwise 0. In addition, we make
the two standard assumptions: positivity, which imposes
support condition 0 < e(x) < 1 for all x [Rosenbaum and
Rubin, 1983], and conditional ignorability (a.k.a. strong
ignorability), which requires conditional independence rela-
tion {Y0,Y1

}?? A | X; this relation is satisfied if features X
are pretreatment variables, contain no mediator or collider,
and include all confounders [Elwert and Winship, 2014].

Under these assumptions, for instance, expected value
EY1 |Xm=x[Y1] can be reformulated as
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where X�m B X\Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in (2) in the same way, we

formulate the following estimator, which we call a weighted
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(5)

We can show that this WCMMD equals D2
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Proposition 1. Suppose that conditional ignorability and
positivity hold. Then D2

m(x) = WCMMD2
Xm=x.

See Appendix D.1 for the proof. Hence, WCMMD has the
same property with D2

m(x): If kY is a characteristic kernel,
WCMMD2

Xm=x = 0 if and only if P(Y0
| x) = P(Y1

| x).

3.3.2 Empirical Estimator of WCMMD

To infer squared MMD D2
m(x) with estimator (5), we esti-

mate the conditional expected values conditioned on Xm = x
using sampleD = {(ai, xi, yi)}ni=1

i.i.d.
⇠ P(A,X,Y).

If feature Xm takes discrete values, we only have to take the
averages over the individuals with Xm = x. Formally, by
letting !a,x

i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)
Pn
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we can estimate the expected values in (5) by
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For continuous-valued feature Xm, we smoothen indicator
function I in (6) by employing the kernel smoothing tech-
nique [Nadaraya, 1964, Watson, 1964] as follows:
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In both cases where !a,x
i is given as (6) and (8), we can

show the consistency of estimator bD2
m(x), i.e., convergence

to the true value in the limit of infinite sample size:

To reduce the computation time, we approximate .% with RFFs [3]: 

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
have bD2

m(x)
p
! D2

m(x) as n! 1.

See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
D2

m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [

p
2 cos(�1y + ⇣1), . . . ,

p
2 cos(�ry + ⇣r)]>,

where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as

eD2
m(x) B heµY0 |x,eµY0 |xiRr + heµY1 |x,eµY1 |xiRr

� 2heµY0 |x,eµY1 |xiRr
(10)

where eµY0 |x and eµY1 |x are the following weighted averages
of the r-dimensional random feature vector:

eµY0 |x =

nX

i=1

!0,x
i z(yi); eµY1 |x =

nX

i=1

!1,x
i z(yi).

Using (10), we estimate our feature importance measure as

eIm =
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nX
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0
BBBBBB@eD
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1
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nX
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eD2
m(xm,&)
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. (11)

Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
have bD2

m(x)
p
! D2

m(x) as n! 1.

See Appendix D.2 for the proof. In practice, we need to
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.
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compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
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simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
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For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
B

BX

b=1

I
⇣
eI(b)

m �
eIm
⌘
. (13)

After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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ComputingthisestimatorrequiresO(rn2),whichisfeasible
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desetal.,2018,SectionF],wesamplenewXm’svaluesfrom
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atthevaluesoftreatmentAandoutcomeY.

OurCRTproceedsasillustratedinAlgorithm1.Wefirst
estimateconditionaldistributionP(Xm|X�m)byfittinga
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Aftercomputingp-valuesp̂1,...,p̂d,weperformmultiple
hypothesistests.Sincethechanceofobtainingfalsepos-
itivesincreaseswiththenumberofhypothesestested,we
controlsuchfalsepositivesbyadjustingthep-values;we
usedBenjamini-Hochber(BH)adjustmentprocedure[Ben-
jaminiandHochberg,1995]inourexperiments.Wesum-
marizeourfeatureselectionframeworkinAlgorithm2.
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See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
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m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [
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2 cos(�1y + ⇣1), . . . ,
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2 cos(�ry + ⇣r)]>,

where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as
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where eµY0 |x and eµY1 |x are the following weighted averages
of the r-dimensional random feature vector:

eµY0 |x =
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
B

BX

b=1

I
⇣
eI(b)
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⌘
. (13)

After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
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See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
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m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [
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where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
m(x) in (7) as
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where eµY0 |x and eµY1 |x are the following weighted averages
of the r-dimensional random feature vector:

eµY0 |x =
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
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importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [
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2 cos(�1y + ⇣1), . . . ,
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2 cos(�ry + ⇣r)]>,

where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic under null hypothesis H0,m, where feature Xm is
irrelevant to treatment e↵ect heterogeneity. To this end, we
simulate such an irrelevant feature for each Xm without
changing joint distribution P(X) so that the joint distribution
of this synthetically generated dummy feature and other
observed features X�m B X\Xm is equal to the original joint
distribution, P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as

p̂m =
1
B

BX

b=1

I
⇣
eI(b)

m �
eIm
⌘
. (13)

After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.

.
Estimated feature importance:

We select features by performing multiple hypothesis tests:

Theorem 1. Suppose that weight !a,x
i is given as (6) or (8).

Then under the assumptions presented in Appendix D.2, we
have bD2

m(x)
p
! D2

m(x) as n! 1.

See Appendix D.2 for the proof. In practice, we need to
estimate !a,x

i by inferring propensity score e(X) B P(A =
1 | X) with a regression model (e.g., neural network).

A drawback of estimator bD2
m(x) in (7) is that it needs compu-

tation time O(n2) for sample size n, implying that estimating
D2

m(x) for each x = xm,1, . . . , xm,n requires O(n3), which is
impractical for large n. To resolve this issue, in what follows,
we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator

To reduce the time of computing estimator bD2
m(x) in (7), we

employ a kernel approximation technique called random
Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
the r features, where r is a hyperparameter. These r fea-
tures are randomly sampled from the Fourier transform
of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [

p
2 cos(�1y + ⇣1), . . . ,

p
2 cos(�ry + ⇣r)]>,

where �1, . . . , �r are drawn from Gaussian distribution
N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
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importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic when null hypothesis H0,m is true. To this end,
we employ a synthetic dummy feature that is unrelated to
treatment e↵ect heterogeneity. To avoid changing joint dis-
tribution P(X), we simulate such a synthetic dummy feature
corresponding to each feature Xm so that the joint distribu-
tion of the dummy feature and other observed features X�m
is equal to P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)
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repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Fourier features (RFFs) [Rahimi et al., 2007].

With RFFs, we approximate kernel function kY (yi, y j) in (7)
as an inner product of two feature vectors:

kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
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of kernel function kY . We formulate kY as a Gaussian ker-
nel with bandwidth hY ; in this case, feature mapping z is
given as z(y) = [
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N(0, 2hY ), and ⇣1, . . . , ⇣r are sampled from uniform distri-
bution Unif(0, 2⇡), respectively [Rahimi et al., 2007].

Based on (9), we approximate estimator bD2
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic when null hypothesis H0,m is true. To this end,
we employ a synthetic dummy feature that is unrelated to
treatment e↵ect heterogeneity. To avoid changing joint dis-
tribution P(X), we simulate such a synthetic dummy feature
corresponding to each feature Xm so that the joint distribu-
tion of the dummy feature and other observed features X�m
is equal to P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)

m . By
repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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we develop a computationally e�cient variant of bD2

m(x).

3.3.3 Computationally E�cient Empirical Estimator
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kY (yi, y j) ⇡ekY (yi, y j) = hz(yi), z(y j)iRr , (9)

where z : R ! Rr is a mapping that outputs a vector of
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Computing this estimator requires O(rn2), which is feasible
by setting hyperparameter r to a moderate value.

3.4 FEATURE SELECTION WITH CONDITIONAL
RANDOMIZATION TEST (CRT)

Using estimated measureseI1, . . . ,eId, we select distributional
treatment e↵ect modifiers. To achieve this, we perform mul-
tiple hypothesis tests where for each m = 1, . . . , d, we con-
sider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (12)

To decide whether to reject each null hypothesisH0,m, we
compute p-value pm, i.e., the probability of obtaining test
statistic Im such that Im � eIm under null hypothesis H0,m.
Evaluating this p-value requires the distribution of test statis-
tic Im underH0,m. However, analytically deriving this distri-
bution is extremely di�cult because the asymptotic distri-
butions of data-dependent weights !0,x

i and !1,x
i in feature

importance measure eIm are unclear.

For this reason, we approximate the distribution of the test
statistic when null hypothesis H0,m is true. To this end,
we employ a synthetic dummy feature that is unrelated to
treatment e↵ect heterogeneity. To avoid changing joint dis-
tribution P(X), we simulate such a synthetic dummy feature
corresponding to each feature Xm so that the joint distribu-
tion of the dummy feature and other observed features X�m
is equal to P(X). To achieve this, following the resampling
scheme called conditional randomization test (CRT) [Can-
des et al., 2018, Section F], we sample new Xm’s values from
the conditional distribution, P(Xm | X�m), without looking
at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first
estimate conditional distribution P(Xm | X�m) by fitting a
generative model L to the data; in our experiments, we
employ a widely-used deep generative model called the
conditional variational autoencoder (CVAE) [Sohn et al.,
2015]. Then, using fitted generative model L, we prepare
B datasets, each of which contains di↵erent values of the
synthetic dummy features drawn from L. In particular, for
each b = 1, . . . , B, we repeat the two steps: sampling n
values of feature Xm as x(b)

m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)
and using these values to compute test statistic eI(b)
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repeating these steps, we obtain an empirical distribution of
the test statistic and compute a p-value as
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After computing p-values p̂1, . . . , p̂d, we perform multiple
hypothesis tests. Since the chance of obtaining false pos-
itives increases with the number of hypotheses tested, we
control such false positives by adjusting the p-values; we
used Benjamini-Hochber (BH) adjustment procedure [Ben-
jamini and Hochberg, 1995] in our experiments. We sum-
marize our feature selection framework in Algorithm 2.
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Figure 1: TPRs (left) and FPRs (right) of each method on synthetic data with sample sizes n = 500, 750, . . . , 2000. Mean
and standard deviation (error bars) over 50 runs with di↵erent datasets are shown.

Under LinMean and NonlinMean, features X1, . . . , X5 influ-
ence the average treatment e↵ect whereas under LinVar and
NonlinVar, they a↵ect the treatment e↵ect variance.

Results: Using these synthetic datasets, we evaluated the
performance of each method. We computed a true positive
rate (TPR) and a false positive rate (FPR), defined as dTP

dT

and dFP
d�dT

, where dT = 5 is the number of truly relevant
features, and dTP and dFP are the number of truly relevant
features that are correctly selected as such and the number
of irrelevant features that are wrongly selected as the rele-
vant ones, respectively. For each method, we performed 50
experiments with di↵erent synthetic datasets generated with
di↵erent random numbers and computed the average and
the standard deviation of TPRs and FPRs over 50 runs.

Figure 1 presents the results on the LinMean, NonlinMean,
LinVar and NonlinVar datasets. With all of them, our method
successfully achieved high TPRs while controlling FPRs
to be close to ↵ = 0.05. Although SI-EM yielded high
TPRs with the LinMean and NonlinMean datasets, since
this method is not designed to detect the features related
to treatment e↵ect variance, it failed to find important fea-
tures from the LinVar and NonlinVar datasets. With Naive,
not only the TPRs but also the FPRs were higher than our
method (especially with the LinMean and LinVar datasets),
indicating that it selected many features; however, many of
these were false positives, which is problematic in practice.

To further illustrate the di↵erence between our method and
Naive, consider how each method approximates the p-value
of each feature Xm (m = 1, . . . , d). Both methods compute

SI-EM
cannot detect 
the features 
related to 
treatment 
effect 
variance

Naive
cannot 
control 
the FPR

Proposed achieves high TPR while controlling FPR 

Synthetic data:

Real-world data: Health record dataset (from NHANES)

the p-value by sampling a synthetic dummy feature that
is irrelevant to treatment e↵ect heterogeneity; however, its
sampling distribution is di↵erent. While our method sam-
ples it from (estimated) conditional distribution P(Xm | X�m)
in the CRT, Naive employs (empirical) marginal distribution
P(Xm) without looking at the values of features X�m. The
latter generation process unnecessarily changes joint distri-
bution P(X): The joint distribution of a synthetic feature and
observed features X�m is greatly di↵erent from that of the
original features X; this di↵erence is much larger than with
our method. Due to such a large change in P(X), Naive failed
to approximate the test statistic’s distribution and yielded
high FPRs. By contrast, by avoiding greatly changing joint
distribution P(X) with the CRT, our method e↵ectively eval-
uated the statistical significance of each feature.

Meanwhile, the use of the CRT requires considerable com-
putation time, as discussed in Section 3.4. To confirm this,
we compared the run time of our method with two baselines:
SI-EM and the variant of our method (Exact), which com-
putes the feature importance measure by Eq. (7) without
any approximation. Regarding our method and Exact, we
evaluated the total run time, including the training time of
the propensity score model and the CVAE. We ran all meth-
ods on a 64-bit CentOS machine with 2.10 GHz Xeon Gold
6130 (x2) CPUs and 256-GB RAM.

Figure 2 shows the run time on the LinMean dataset with
sample sizes n = 500, 750, . . . , 2000. When n = 2000, SI-
EM and our method required 27 and 10, 360 seconds, re-
spectively, thus exhibiting a notable di↵erence. However,
our method needed far less time than Exact, demonstrating
the e↵ectiveness of kernel approximation with RFFs.

In summary, these results show the following findings:

• Our method poses a computational challenge; how-
ever, it successfully discovered the features related to
the average treatment e↵ect and the treatment e↵ect
variance.

• SI-EM does not need much time; however, it failed to
find the features related to the treatment e↵ect variance.

Thus, our proposed feature selection framework has made
a significant step toward discovering the features related to
distributional treatment e↵ect heterogeneity, which, to the
best of our knowledge, is the first attempt in causal inference
studies. A further reduction of computation time is left as
our future work, as described in Section 3.4.

4.3 REAL-WORLD DATA EXPERIMENTS

Data: We used the health records from the National Health
and Nutrition Examination Survey (NHANES).3 Following
Zhao et al. [2022], we collected the records of n = 9677

3https://wwwn.cdc.gov/nchs/nhanes/

Figure 2: Run time comparison among proposed method
(red), SI-EM (blue), and Exact (purple) on LinMean dataset
with sample sizes n = 500, 750, . . . , 2000

Table 2: p-values of features selected by our method from
NHANES dataset: Mean and standard deviation are shown
for all features with mean p-values less than ↵ = 0.05.

Feature Adjusted p-value

Age 0.0075 ± 0.0305
Gender 0.0046 ± 0.0269
Number of cigarettes smoked 0.0 ± 0.0

individuals. Each record contains d = 20 features, such as
age, gender, race, income, and past medical history (e.g.,
asthma, gout, stroke, and heart disease); 3 of them take
continuous values, and the others are discrete.

With this dataset, we investigated which features modify the
e↵ects of obesity on low-grade systemic inflammation by
regarding whether body mass index (BMI) exceeds 25 as
treatment A and serum C-reactive protein (CRP) level as
outcome Y . Discovering such features has important medi-
cal implications because low-grade inflammation increases
the risk of various chronic diseases, such as cancers and
cardiovascular disease [Rodríguez-Hernández et al., 2013].

Since the truly relevant features are unknown, we cannot
evaluate the TPRs and FPRs. For this reason, we compared
the features selected by our method and SI-EM. Since our
method is founded on the randomized algorithm (i.e., CRT),
we computed the mean of the adjusted p-values over 50 runs
and used this mean p-value to select the features.

Results: Table 2 presents the adjusted p-values for all
features that are selected by our proposed method.

Both our method and SI-EM successfully selected age and
gender, which were reported as important in the previous
medical studies [Visser et al., 1999]. Although SI-EM se-
lected only these two features, our method concluded that
the number of cigarettes smoked is also statistically signifi-
cant. Selecting this feature is interesting and seems reason-
able because the synergistic e↵ect of obesity and smoking
on systemic inflammation has been reported in previous
studies [Ólafsdóttir et al., 2005].

Not detected 
by SI-EM

Treatment 3: obesity
Features 4: e.g., age, gender, race, past medical history (e.g., asthma, stroke)

Outcome ): low-grade systemic inflammation
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Multiple tests with conditional 
randomization test (CRT):

the p-value by sampling a synthetic dummy feature that
is irrelevant to treatment e↵ect heterogeneity; however, its
sampling distribution is di↵erent. While our method sam-
ples it from (estimated) conditional distribution P(Xm | X�m)
in the CRT, Naive employs (empirical) marginal distribution
P(Xm) without looking at the values of features X�m. The
latter generation process unnecessarily changes joint distri-
bution P(X): The joint distribution of a synthetic feature and
observed features X�m is greatly di↵erent from that of the
original features X; this di↵erence is much larger than with
our method. Due to such a large change in P(X), Naive failed
to approximate the test statistic’s distribution and yielded
high FPRs. By contrast, by avoiding greatly changing joint
distribution P(X) with the CRT, our method e↵ectively eval-
uated the statistical significance of each feature.

Meanwhile, the use of the CRT requires considerable com-
putation time, as discussed in Section 3.4. To confirm this,
we compared the run time of our method with two baselines:
SI-EM and the variant of our method (Exact), which com-
putes the feature importance measure by Eq. (7) without
any approximation. Regarding our method and Exact, we
evaluated the total run time, including the training time of
the propensity score model and the CVAE. We ran all meth-
ods on a 64-bit CentOS machine with 2.10 GHz Xeon Gold
6130 (x2) CPUs and 256-GB RAM.

Figure 2 shows the run time on the LinMean dataset with
sample sizes n = 500, 750, . . . , 2000. When n = 2000, SI-
EM and our method required 27 and 10, 360 seconds, re-
spectively, thus exhibiting a notable di↵erence. However,
our method needed far less time than Exact, demonstrating
the e↵ectiveness of kernel approximation with RFFs.

In summary, these results show the following findings:

• Our method poses a computational challenge; how-
ever, it successfully discovered the features related to
the average treatment e↵ect and the treatment e↵ect
variance.

• SI-EM does not need much time; however, it failed to
find the features related to the treatment e↵ect variance.

Thus, our proposed feature selection framework has made
a significant step toward discovering the features related to
distributional treatment e↵ect heterogeneity, which, to the
best of our knowledge, is the first attempt in causal inference
studies. A further reduction of computation time is left as
our future work, as described in Section 3.4.

4.3 REAL-WORLD DATA EXPERIMENTS

Data: We used the health records from the National Health
and Nutrition Examination Survey (NHANES).3 Following
Zhao et al. [2022], we collected the records of n = 9677

3https://wwwn.cdc.gov/nchs/nhanes/

Figure 2: Run time comparison among proposed method
(red), SI-EM (blue), and Exact (purple) on LinMean dataset
with sample sizes n = 500, 750, . . . , 2000

Table 2: p-values of features selected by our method from
NHANES dataset: Mean and standard deviation are shown
for all features with mean p-values less than ↵ = 0.05.

Feature Adjusted p-value

Age 0.0075 ± 0.0305
Gender 0.0046 ± 0.0269
Number of cigarettes smoked 0.0 ± 0.0

individuals. Each record contains d = 20 features, such as
age, gender, race, income, and past medical history (e.g.,
asthma, gout, stroke, and heart disease); 3 of them take
continuous values, and the others are discrete.

With this dataset, we investigated which features modify the
e↵ects of obesity on low-grade systemic inflammation by
regarding whether body mass index (BMI) exceeds 25 as
treatment A and serum C-reactive protein (CRP) level as
outcome Y . Discovering such features has important medi-
cal implications because low-grade inflammation increases
the risk of various chronic diseases, such as cancers and
cardiovascular disease [Rodríguez-Hernández et al., 2013].

Since the truly relevant features are unknown, we cannot
evaluate the TPRs and FPRs. For this reason, we compared
the features selected by our method and SI-EM. Since our
method is founded on the randomized algorithm (i.e., CRT),
we computed the mean of the adjusted p-values over 50 runs
and used this mean p-value to select the features.

Results: Table 2 presents the adjusted p-values for all
features that are selected by our proposed method.

Both our method and SI-EM successfully selected age and
gender, which were reported as important in the previous
medical studies [Visser et al., 1999]. Although SI-EM se-
lected only these two features, our method concluded that
the number of cigarettes smoked is also statistically signifi-
cant. Selecting this feature is interesting and seems reason-
able because the synergistic e↵ect of obesity and smoking
on systemic inflammation has been reported in previous
studies [Ólafsdóttir et al., 2005].

Health record dataset (NHANES):

Not detected by the existing method

Results
Synthetic data:

High TPR while controlling FPR
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